10 research outputs found
A Drive to Driven Model of Mapping Intraspecific Interaction Networks.
Community ecology theory suggests that an individual\u27s phenotype is determined by the phenotypes of its coexisting members to the extent at which this process can shape community evolution. Here, we develop a mapping theory to identify interaction quantitative trait loci (QTL) governing inter-individual dependence. We mathematically formulate the decision-making strategy of interacting individuals. We integrate these mathematical descriptors into a statistical procedure, enabling the joint characterization of how QTL drive the strengths of ecological interactions and how the genetic architecture of QTL is driven by ecological networks. In three fish full-sib mapping experiments, we identify a set of genome-wide QTL that control a range of societal behaviors, including mutualism, altruism, aggression, and antagonism, and find that these intraspecific interactions increase the genetic variation of body mass by about 50%. We showcase how the interaction QTL can be used as editors to reconstruct and engineer new social networks for ecological communities
Effects of Dietary <i>Bacillus amyloliquefaciens</i> SCAU-070 (Based on a Woody Plant-Based Diet) on Antioxidation, Immune and Intestinal Microbiota of Tilapia (<i>Oreochromis niloticus</i>)
This study aimed to explore the effects of Bacillus amyloliquefaciens (BA) as one woody forage addition (as a probiotic, 1 × 107 CFU/g) on tilapia (Oreochromis niloticus). Woody forage is one kind of fishery feed that could significantly enhance the growth, feed utilization, and digestibility of tilapia. At first, tilapia was divided into eight groups and fed with control, control + BA, Moringa oleifera, M. oleifera + BA, Neolamarckia cadamba, N. cadamba + BA, Broussonetia papyrifera, and B. papyrifera + BA diets, respectively. After dieting for 8 weeks, the intestinal morphology of tilapia in the eight groups was observed, and the effects of the B. amyloliquefaciens addition and wordy forage on the intestine functions were analyzed by two-way ANOVA. As no significant negative effects were found on the woody forage on tilapia, the villus height, density and width, and epithelial goblet cells in the posterior intestines of tilapia with BA supplementation were greater than those in the groups without BA supplementation, suggesting B. amyloliquefaciens SCAU-070 could promote the growth and development of tilapia intestinal tracts. Furthermore, it was found that B. amyloliquefaciens SCAU-070 enhanced the antioxidation capacity of tilapia posterior intestine tissue by promoting the activity of superoxide dismutase and content of malondialdehyde. In addition, the result of high-throughput sequencing (16S rDNA) showed that the beneficial bacteria Cetobacterium and Romboutsia in the probiotic groups increased significantly, while the potential pathogenic bacteria Acinetobacter decreased significantly
Multi-Omics Data Reveal Amino Acids Related Genes in the Common Carp <i>Cyprinus carpio</i>
Amino acids have important physiological effects on fish growth and development and are essential nutrition for humans. Flavor-related amino acids, such as glutamic acid and glycine, could have a significant effect on the taste of fish flesh. However, studies on the genetic mechanisms of amino acid metabolism in common carp (Cyprinus carpio) are still limited. This study identified divergent patterns on the genomic, transcriptomic and epigenomic levels in two groups of common carp with different amino acid contents. After genome-wide association analysis, a total of 62 genes was found to be associated with glycine, proline and tyrosine content. Transcriptome analysis of essential amino acids, branched-chain amino acids and flavor-related amino acids were performed using brain, liver and muscle tissues, resulting in 1643 differentially expressed genes (DEGs). Whole-genome bisulfite sequencing identified 3108 genes with differentially methylated promoters (DMPs). After the enrichment analysis, a series of pathways associated with amino acid metabolism, including growth regulation, lipid metabolism and the citrate cycle, was revealed. Integrated studies showed a strong correlation between DEGs and DMPs for amino acid contents in brain and muscle tissues. These multi-omics data revealed candidate genes and pathways related to amino acid metabolism in C. carpio
The ubiquitin-conjugating enzyme UBE2O modulates c-Maf stability and induces myeloma cell apoptosis
Abstract
Background
UBE2O is proposed as a ubiquitin-conjugating enzyme, but its function was largely unknown.
Methods
Mass spectrometry was applied to identify c-Maf ubiquitination-associated proteins. Immunoprecipitation was applied for c-Maf and UBE2O interaction. Immunoblotting was used for Maf protein stability. Luciferase assay was used for c-Maf transcriptional activity. Lentiviral infections were applied for UBE2O function in multiple myeloma (MM) cells. Flow cytometry and nude mice xenografts were applied for MM cell apoptosis and tumor growth assay, respectively.
Results
UBE2O was found to interact with c-Maf, a critical transcription factor in MM, by the affinity purification/tandem mass spectrometry assay and co-immunoprecipitation assays. Subsequent studies showed that UBE2O mediated c-Maf polyubiquitination and degradation. Moreover, UBE2O downregulated the transcriptional activity of c-Maf and the expression of cyclin D2, a typical gene modulated by c-Maf. DNA microarray revealed that UBE2O was expressed in normal bone marrow cells but downregulated in MGUS, smoldering MM and MM cells, which was confirmed by RT-PCR in primary MM cells, suggesting its potential role in myeloma pathophysiology. When UBE2O was restored, c-Maf protein in MM cells was significantly decreased and MM cells underwent apoptosis. Furthermore, the human MM xenograft in nude mice showed that re-expression of UBE2O delayed the growth of myeloma xenografts in nude mice in association with c-Maf downregulation and activation of the apoptotic pathway.
Conclusions
UBE2O mediates c-Maf polyubiquitination and degradation, induces MM cell apoptosis, and suppresses myeloma tumor growth, which provides a novel insight in understanding myelomagenesis and UBE2O biology