28 research outputs found

    Effect of Stressed-Skin Action on Optimal Design of a Cold-Formed Steel Portal Framing System

    Get PDF
    Cold-formed steel portal frames can be a viable alternative to conventional hot-rolled steel portal frames. They are commonly used for low-rise commercial, light industrial and agricultural buildings. In this paper, the effect of semi-rigid joints and stressed-skin action are taken into account in the optimal design of cold-formed steel portal frames. A frame idealization is presented, the results of which are verified against full-scale. A real-coded niching genetic algorithm (RC-NGA) is then applied to search for the minimum cost for a building of span of 6 m, height-to-eaves of 3 m and length of 9 m, with a frame spacing of 3 m. It was shown that if stressed-skin action and joints effects are taken into account, that the wind load cases are no longer critical and that the serviceability limit state controls for the gravity load case with the apex deflection binding. It was also shown that frame costs are reduced by approximately 65%, when compared against a design that does not consider stressed-skin action, and 50% when compared against a design based on rigid joints

    Evaluation of snow cover fraction for regional climate simulations in the Sierra Nevada

    Get PDF
    Mountain snow cover plays an important role in regional climate due to its high albedo, its effects on atmospheric convection, and its influence on lower-elevation runoff. Snowpack water storage is also a critical water resource and understanding how it varies is of great social value. Unfortunately, in situ measurements of snow cover are not widespread; therefore, models are often depended on to assess snowpack and snow cover variability. Here, we use a new satellite-derived snow product to evaluate the ability of the Weather Research and Forecasting (WRF) regional climate model with the Noah land surface model with multiparameterization options (Noah-MP) to simulate snow cover fraction (SCF) and snow water equivalent (SWE) on a 3 km domain over the central Sierra Nevada. WRF/Noah-MP SWE simulations improve upon previous versions of the Noah land surface model by removing the early bias in snow melt. As a result, WRF/Noah-MP now accurately simulates spatial variations in SWE. Additionally, WRF/Noah-MP correctly identifies the areas where snow is present and captures large-scale variability in SCF. Temporal RMSE of the domain-average SCF was 1863.9 km2 (24%). However, our study reveals that WRF/Noah-MP struggles to simulate SCF at the scale of individual grid cells. The equation used to calculate SCF fails to produce temporal variations in grid-scale SCF and depletion occurs too rapidly. Therefore SCF is a nearly binary metric inmountain environments. Sensitivity tests of the equation may improve simulation of SCF during accumulation or melt but does not remove the bias for the entire snow season. Though WRF/Noah-MP accurately simulates the presence or absence of snow, high-resolution, reliable SCF measurements may only be attainable if snow depletion equations are designed specifically for complex topographical areas

    Bias Correction of Hydrologic Projections Strongly Impacts Inferred Climate Vulnerabilities in Institutionally Complex Water Systems

    Get PDF
    Water-resources planners use regional water management models (WMMs) to identify vulnerabilities to climate change. Frequently, dynamically downscaled climate inputs are used in conjunction with land-surface models (LSMs) to provide hydrologic streamflow projections, which serve as critical inputs for WMMs. Here, we show how even modest projection errors can strongly affect assessments of water availability and financial stability for irrigation districts in California. Specifically, our results highlight that LSM errors in projections of flood and drought extremes are highly interactive across timescales, path-dependent, and can be amplified when modeling infrastructure systems (e.g., misrepresenting banked groundwater). Common strategies for reducing errors in deterministic LSM hydrologic projections (e.g., bias correction) can themselves strongly distort projected climate vulnerabilities and misrepresent their inferred financial consequences. Overall, our results indicate a need to move beyond standard deterministic climate projection and error management frameworks that are dependent on single simulated climate change scenario outcomes

    Adaptive hypermedia driven serious game design and cognitive style in school settings: an exploratory study

    Get PDF
    The potential value of adaptive hypermedia and game based learning to education and training has long been recognised, numerous studies have been undertaken in both those areas investigating its potential to improve learner performance. In particular research has indicated that tailoring content to match the prior knowledge of the user has the power to increase the effectiveness of learning systems. Recent studies have begun to indicate that Adaptive Hypermedia Learning Systems (AHLS) based on cognitive styles have the power to improve learner performance. Recent examples of research exploring avenues for effectively incorporating serious games into AHLS indicated that integrating serious games into a personalized learning environment has the potential educational benefits of combining a personalized delivery with increased learner motivation. The exploratory study presented in this paper here developed an Adaptive Hypermedia Driven Serious Game (AHDSG) based around Pask’s Holist-Serialist dimension of cognitive style. A prototype AHDSG was designed and developed to teach students about Sutton Hoo and archaeological methods. Sixty-six secondary school students participated in this study. Overall the findings of this study show that there was an improvement in performance among all participants. Although the participants that used the system which adapted to their preferred cognitive style achieved a higher mean gain score, the difference was not significant

    Cord Blood Stem Cell-Mediated Induction of Apoptosis in Glioma Downregulates X-Linked Inhibitor of Apoptosis Protein (XIAP)

    Get PDF
    XIAP (X-linked inhibitor of apoptosis protein) is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC) in glioma cells would cause them to undergo apoptotic death.We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310). In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP). Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant gliomas

    Characterizing Biases in Mountain Snow Accumulation From Global Data Sets

    Get PDF
    Mountain snow has a fundamental role in regional water budgets through its seasonal accumulation, storage, and melt. However, characterizing snow accumulation over large regions remains difficult because of limited observational networks and the inability of available satellite instruments to remotely sense snow depth or water equivalent in mountains. Models offer some ability to estimate snow water storage (SWS) on mountain range to continental scales. Here we compare four commonly used global data sets to understand whether there is a consensus regarding mountain SWS estimates among them. The data sets—European Centre for Medium-Range Weather Forecasts Reanalysis-Interim, Global Land Data Assimilation System, Modern-Era Retrospective Analysis for Research and Applications version 2, and Variable Infiltration Capacity—agree to within ±36% of the four–data set average for total global SWS. When mountain areas are extracted using a new seasonal mountain snow classification data set, the four data products have more agreement, where all are within ±21% of the seasonal SWS for mountain regions. However, when compared to high-resolution (9 km) simulations of SWS from the Weather Research and Forecasting (WRF) regional model, the four global products differ from WRF-estimated North American mountain snow accumulation by 40–66%, with a negative bias up to 651 km3, comparable to the annual streamflow of the Mississippi River. If we extend the North America SWS bias to global mountains, the global data sets may miss as much as 1,500 km3 of SWS, equivalent to 4% of the flow in all the world's rivers. The potential difference of SWS suggests more work must be done to characterize water resources in snow-dominated regions, particularly in mountains

    Optimal design of cold-formed steel portal frames for stressed-skin action using genetic algorithm

    Get PDF
    This paper describes a stressed-skin diaphragm approach to the optimal design of the internal frame of a cold-formed steel portal framing system, in conjunction with the effect of semi-rigid joints. Both ultimate and serviceability limit states are considered. Wind load combinations are included. The designs are optimized using a real-coded niching genetic algorithm, in which both discrete and continuous decision variables are processed. For a building with two internal frames, it is shown that the material cost of the internal frame can be reduced by as much as 53%, compared with a design that ignores stressed-skin action

    Effect of stressed-skin action on optimal design of cold-formed steel square and rectangular-shaped portal frame buildings

    No full text
    © 2016, Korean Society of Steel Construction and Springer-Verlag Berlin Heidelberg.Cold-formed steel (CFS) portal frames can be a viable alternative to conventional hot-rolled steel portal frames. They are commonly used for low-rise commercial, light industrial and agricultural buildings. In this paper, the effect of stressed-skin action on the optimum design of CFS portal frames is investigated by conducting a minimum cost design optimisation on a building of span of 6 m, height-to-eaves of 3 m and frame spacing of 3 m; the effect of different number of bays are considered. For the purpose of this study, it is assumed that gables are rigid.The effect of stressed-skin action is larger for“square-shaped” buildings (i.e. when the span and length are the same on plan) and decreases as more bays are added(i.e. as the building becomes more “rectangular-shaped” on plan). The results of the minimum cost optimisation indicate that if stressed-skin action is taken into account, the cost of the internal frame can be reduced by around half for “square-shaped” buildings. It should be noted that this is a minimum cost optimisation, which is not the same as a minimum weight optimisation. It is also shown that a safe design of internal frames could be obtained by ignoring wind loads (i.e. designing the frame only for gravity loads),but this is limited to buildings having a “square-shape”
    corecore