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0.  Abstract 

 Mountain snow cover plays an important role in regional climate due to its high albedo, 

its effects on atmospheric convection, and its influence on lower-elevation runoff. Snowpack 

water storage is also a critical water resource and understanding how it varies is of great social 

value. Unfortunately, in situ measurements of snow cover are not widespread; therefore, models 

are often depended on to assess snowpack and snow cover variability. Here, we use a new 

satellite-derived snow product to evaluate the ability of the Weather Research and Forecasting 

(WRF) regional climate model with the Noah land surface model with multiparameterization 

options (Noah-MP) to simulate snow cover fraction (SCF) and snow water equivalent (SWE) on 

a 3 km domain over the central Sierra Nevada. WRF/Noah-MP SWE simulations improve upon 

previous versions of the Noah land surface model by removing the early bias in snow melt. As a 

result, WRF/Noah-MP now accurately simulates spatial variations in SWE. Additionally, 

WRF/Noah-MP correctly identifies the areas where snow is present and captures large-scale 

variability in SCF. Temporal RMSE of the domain-average SCF was 1863.9 km
2
 (24%). 

However, our study reveals that WRF/Noah-MP struggles to simulate SCF at the scale of 

individual grid cells. The equation used to calculate SCF fails to produce temporal variations in 

grid-scale SCF and depletion occurs too rapidly. Therefore SCF is a nearly binary metric in 
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mountain environments. Sensitivity tests of the equation may improve simulation of SCF during 

accumulation or melt but does not remove the bias for the entire snow season. Though 

WRF/Noah-MP accurately simulates the presence or absence of snow, high-resolution, reliable 

SCF measurements may only be attainable if snow depletion equations are designed specifically 

for complex topographical areas.  

 

 

1.  Introduction 

 The presence or absence of snow is an important component of climate in mountainous 

regions. Snow has a high albedo compared to most other land cover types, so its presence 

substantially decreases the amount of solar radiation absorbed by the land surface and inhibits 

radiative warming of the atmosphere. As snow melts, the underlying land surface is revealed, the 

amount of absorbed solar radiation increases, and atmospheric temperature increases. This 

process governs the snow-albedo feedback that acts to cool the surface when there is expansive 

snow cover (Groisman et al., 1994; Namias, 1985). The positive snow-albedo feedback amplifies 

warming in snow-covered mountain environments on seasonal to multidecadal timescales (Déry 

and Brown, 2007). Snow cover fraction (SCF), the fractional portion of the surface covered by 

snow, also impacts the convective activity of the atmosphere through the changes in latent and 

sensible heat associated with melt and snowfall (Zhang, 2005). From an ecological perspective, 

the presence of snow prevents soil and roots from freezing (Groffman et al., 2001) and helps to 

maintain adequate soil moisture levels (Yeh et al., 1983). Finally, mountainous regions and areas 

downstream of montane headwaters rely heavily on snowmelt runoff for water supplies 

throughout the year. Snowpack acts as a natural reservoir by storing winter precipitation and 

releasing water during spring snowmelt (Barnett et al., 2005). At present, runoff from melt 

generally coincides with higher demand during the summer. However, should snow begin to 
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melt earlier in the season due to warmer temperatures that result from anthropogenic climate 

forcing, there may be water shortages, especially in regions that do not have adequate capacity to 

store early snow melt. With an estimated one-sixth of the global population living in regions that 

depend on snowpack, water resources could be strained for millions of people (Barnett et al., 

2005). The Sierra Nevada in California is one such area since it provides 60% of Southern 

California’s water supply through snowpack (Waliser et al., 2009), yet the reservoirs must be 

managed to balance the needs of water storage and flood prevention. Reduced snow cover could 

alter the region’s radiative balance and exacerbate the problem of already scarce water resources. 

Recent studies suggest that the melt season and the onset of spring are already occurring earlier 

in the western United States (Cayan et al., 2001; Hamlet et al., 2005; Mote et al., 2005; Kapnick 

and Hall, 2012). However few SCF validation studies have been done, and it is uncertain 

whether regional climate models can accurately reproduce observed spatial and temporal patterns 

in SCF. 

 In this study, we aim to validate a model simulation of SCF over the central Sierra 

Nevada. The majority of past modeling studies of mountain snowpack have focused on snow 

water equivalent (SWE), not SCF, because SWE is important for water resources (Rasmussen et 

al., 2011) and SCF is difficult to measure in the field. Though in situ SCF data are hard to obtain, 

measurements can instead be taken from space with satellite-based sensors. Remote sensing 

methods map snow cover either through a binary flag (“snow” or “no snow”) or as SCF (Nolin, 

2010). Although space-based measurements of snow cover are becoming more widely used, they 

are complicated by clouds and vegetation. Crane and Anderson (1984) used near-infrared (NIR) 

reflectance to differentiate clouds and snow, which have similar reflectances in visible 

wavelengths. In NIR wavelengths, snow is not highly reflective and appears dark while clouds 
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appear bright. Vegetation poses difficulties because forests inhibit visibility of snow beneath the 

canopy and add to the pixel’s reflectance signature (Nolin, 2010). Here we use a SCF product 

derived from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS), the MODIS 

Snow-Covered Area and Grain size (MODSCAG) algorithm (Painter et al., 2009), with a 

correction to estimate SCF under vegetation. MODSCAG calculates the SCF of each MODIS 

pixel using spectral reflectances of snow based on snow grain size and other land-cover types. 

MODSCAG is a physical-based algorithm optimized for mountainous environments, and has 

shown good accuracy in past studies. Rittger et al. (2013) found MODSCAG SCF RMSE of 0.10 

in mountainous terrain. Thus in this study, we validate WRF SCF by comparison against 

MODSCAG. 

 This study extends previous work by Pavelsky et al. (2011), here after referred to as 

PKH2011, which validated the accumulation and melt of snowpack in the central Sierra Nevada 

via WRF V3.1/Noah. Here, we validate SCF in two different versions of WRF/Noah (V3.1 and 

the more recent V3.4 with a new land surface model, Noah-MP) against MODIS-derived 

measurements of daily SCF (Painter et al., 2009) for the same time period and spatial extent used 

by PKH2011. The latest version of WRF/Noah has incorporated significant improvements to the 

SWE scheme but has yet to be validated in the Sierra Nevada and for maritime snow. Validation 

of the WRF/Noah-MP SCF against a high-quality, near-daily SCF product will provide the first 

analysis of how well regional climate models simulate SCF in mountain environments. 

 

2.  Models and Data 

Model Setup 
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 The National Center for Atmospheric Research and several collaborating institutions 

developed the WRF model for operational weather forecasting and regional climate and 

meteorological studies (Skamarock et al., 2008). In this study, we use both WRF V3.1 (with the 

Noah land surface model (LSM)) and WRF V3.4 (with the newer Noah-MP LSM) to investigate 

the evolution of SCF and SWE over the period November 2001 through September 2002 for the 

central Sierra Nevada (Figure 1a). Version 3.1 uses the Noah LSM, which has multiple soil 

layers but only a single layer of snowpack that is combined with surface soil and the vegetation 

canopy (Chen and Dudhia, 2001; Ek et al., 2003). In WRF V3.4, there is an option to use Noah-

MP, a new Noah LSM with multiparameterization options (Niu et al., 2011). We use Noah-MP 

because prior studies suggest improved simulation of SWE (Niu et al., 2011). In Noah-MP, snow 

is modeled separately from soil using up to three distinct snow layers, depending on snow depth. 

Noah-MP also has a new method of calculating SCF based on snow density, SWE, and snow 

depth as compared to Noah, in which SCF is based on SWE and snow depth alone (Ek et al., 

2003; Koren et al., 1999). During the ablation season, the SCF equation describes the snow 

depletion curve (SDC) of how the SCF changes as the snowpack melts. A model run using WRF 

V3.4 with Noah has similar results to WRF V3.1/Noah, leading us to believe the version of WRF 

does not significantly contribute to changes in SCF or SWE simulation. 

All simulations are run with three nested domains at increasingly fine resolution – 27, 9, 

and 3 km – though here we focus on the 3 km domain because prior work suggests that this 

resolution is necessary to capture orographic processes to first order (Pavelsky et al., 2011). The 

lateral boundary conditions for the 27 km domain and the initial conditions (at time step 0) come 

from the North American Regional Reanalysis (NARR) product (Mesinger et al., 2006), while 

each higher resolution domain receives boundary conditions from the domain enclosing it. 
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Simulation results are output on a 3-hour timestep. As such, simulations of all three domains are 

run concurrently, with larger domains processed before smaller domains at each individual 

timestep. 

 We selected the following WRF physics options: the Thompson et al. (2008) cloud 

microphysics scheme, the rapid radiative transfer model longwave scheme (Mlawer et al., 1997), 

the Dudhia shortwave scheme (Dudhia, 1989), the Yonsei University planetary boundary layer 

scheme (Hong et al., 2006), and the modified Kain-Fritsch convective parameterization for the 

two outer domains (Kain, 2004; Kain and Fritsch, 1990, 1993).  

Remotely Sensed Data 

 Using NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS), a sensor on-

board the Terra and Aqua satellites, Painter et al. (2003) developed the MODIS Snow-Covered 

Area and Grain size (MODSCAG) algorithm, which calculates SCF in 500x500 m grid cells. 

Here we use the latest version of MODSCAG, version 3, with SCF corrections for vegetated 

areas (Painter et al., personal communication). Though we focus primarily on version 3, we will 

show one comparison with MODSCAG version 2, which did not have the vegetation correction 

(Painter et al., 2009). In version 2, accurate detection of SCF was limited in forest environments 

because MODSCAG cannot calculate SCF beneath canopies. In version 3, those limitations are 

addressed. We chose to use MODSCAG for validation because it is physical-based and 

optimized for mountain environments. The MODSCAG algorithm is a multiple endmember 

method that uses linear spectral analysis to solve for SCF and grain size for each pixel. An 

endmember is the spectral reflectance of a pure surface cover, such as snow. The scheme 

developed by Painter et al. (2009) uses multiple endmembers for snow based on different snow 

grain sizes. The linear spectral analysis assumes that measured radiance is a linear combination 
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of the reflectances of the surface features. MODSCAG uses the MODIS MOD09GA product, 

which is an atmospherically corrected surface hemispherical-directional reflectance factor, to 

avoid misclassification of clouds as snow and vice versa.  

In order to develop a daily SCF product, we first replace cloudy pixels in each image 

with SCF measurements from the most recent previous clear-sky image. On average, we 

replaced ~26% of each scene (2400x2400 pixels) to remove cloudy areas. For days where there 

was no data due to a satellite processing problem or some other error (a total of 13 days), we 

simply used the previous day’s measurements. 

Study Area and In Situ Measurements 

 The innermost model domain covers an area of 34,992 km
2
 that includes the Central 

Sierra Nevada Mountains and parts of California’s Central Valley. Four watersheds are fully 

located within the study area: the Stanislaus, the Tuolumne, the Merced, and the San Joaquin. 

WRF simulated elevations range from 61 m to 3646 m with an average elevation of 1561 m. 

Elevations above 1500 m have an average annual maximum vegetation fraction of 48% with a 

dominant vegetation type of evergreen needleleaf, according to the WRF land use classification. 

To evaluate WRF SWE values, we used snow pillow data measured by pressure-sensing 

pillows. Inside the 3x3 km domain, there are 41 snow pillow sites (shown as black dots in Figure 

1b) with daily observations acquired from the California Department of Water Resources Data 

Exchange Center (http://cdec.water.ca.gov). Nine stations operated by the Natural Resources 

Conservation Service are part of the SNOTEL network. All stations are at elevations above 1875 

m with an average elevation of 2607 m. The average maximum SWE measured by the snow 

pillows for our study period is 65.9 cm. The same 41 locations were used in PKH2011. 
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3.  Methods of Assessing Model Performance 

Snow Water Equivalent Timing 

 In order to examine how Noah and Noah-MP differ in simulation of snowpack in the 

central Sierra Nevada, we compare the timing of snowmelt following the methods of PKH2011. 

We use SWE centroid date (SCD) to assess model skill in simulating snowpack timing. SCD is 

the date the center of snowpack mass occurs (Kapnick and Hall, 2010). The SCD is computed as: 

    
∑      
∑    

 

Where    is the number of days since November 1 and      is each day’s SWE measurement in 

millimeters. PKH2011 indicated that, on average, simulated SCD occurred 22 - 25 days early in 

WRF V3.1/Noah compared to snow pillow observations. We replicate the method presented by 

PKH2011 of regressing the difference between modeled and observed SCD against the 

difference in elevation between each observation point and the corresponding model grid cell 

(Figure 2), which allows us to assess the ability of WRF V3.4/Noah-MP to produce unbiased 

estimates of snowpack accumulation and ablation timing. Model grid cells and point-based 

observations will always have inherent differences due to area-averaging in models (most 

notably with elevation), so individual modeled SCD values are unlikely to match observed 

values. However, we assume that the error in snowpack timing due to scale differences is 

randomly distributed once corrected for elevation bias. As such, if the physics within the model 

are correct, the y-intercept of the regression line between SCD and elevation differences should 

be close to zero. 

Snow Cover Fraction 

 We use three different methods to validate WRF/Noah simulations of SCF: 
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 First, we compare geographic extent of snow cover by mapping the output of WRF and 

MODSCAG together. The spatial plots provide a visual comparison of the two datasets 

throughout the entire season. Prior to any quantitative analysis, this provides an opportunity to 

see the time periods when WRF and MODSCAG have large discrepancies. For example, 

versions of WRF/Noah up through v3.1 have consistently struggled to simulate snowpack during 

the melt season (Figure 3d, Livneh et al., 2010). 

 Second, we compare the total snow covered area (SCA) in WRF and MODSCAG over 

the entire innermost WRF domain. We use two methods to study SCA. First, we count the 

number of snowy pixels. Since MODSCAG is not able to detect SCF below 0.15 (Painter et al., 

2009), we consider a pixel to be snowy if it has at least a SCF value of 0.15. The snowy pixel 

metric gives an indication if WRF/Noah-MP is simulating approximately the correct number of 

grid cells with snow present. However, this does not consider the individual SCF values. Second, 

total SCA is calculated by multiplying the SCF value for each grid cell by the dataset’s 

resolution (9 km
2
 for WRF and 0.25 km

2
 for MODSCAG). Here we additionally compare 

MODSCAG V2 SCA to the vegetation-corrected MODSCAG V3 SCA to assess the importance 

of the vegetation correction.  

 Finally, we compare the mean SCF in unvegetated pixels in WRF and MODSCAG. We 

choose to only consider sparsely vegetated areas due to the effects of vegetation on SCF. To 

determine whether accuracy of land cover classification impacts our results, we use two different 

products:  the native WRF land cover map and the MODIS land cover classification (Friedl et 

al., 2002). WRF characterizes land cover based on the United States Geological Survey’s 

(USGS) 24 land use categories (Wang, 2012). We also use the MODIS land cover classification 

scheme. Since there are 36 MODIS pixels in one WRF pixel, we consider a WRF cell to be 
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sparsely vegetated under the MODIS scheme if it contains at least 20 unvegetated MODIS pixels 

(55%) within the WRF grid cell. Figure 3 shows the differences in pixel selection from the two 

methods with 53 unvegetated pixels in the WRF scheme and only 41 MODIS-aggregated pixels. 

WRF unvegetated pixels are more distributed across various elevation classes with more found at 

low elevations. We do not consider unvegetated grid cells below 2200 m because they do not 

represent the mountainous environments with which we are primarily concerned. We match each 

of the remaining 44 unvegetated WRF pixel to the mean of the 36 corresponding MODSCAG 

pixels and compare daily SCF.  

4.  Results 

Snow Water Equivalent 

 Comparison of SCD error and elevation difference between snow pillows and WRF 

pixels in WRF V3.1/Noah and WRF V3.4/Noah-MP (Figure 2) reveals a substantial 

improvement in simulation of snowpack accumulation and especially in melt timing. Linear 

regression analysis determines y=0.039x+2.08 to be the line of best fit with a R
2
 value of 0.536. 

This result suggest that WRF V3.4/Noah-MP simulates the SCD ~2 days late when there is no 

elevation biased present, compared to 22 days early in WRF V3.1/Noah. With a p-value of 

0.0775, the 2 day bias of WRF V3.4/Noah-MP SCD is significant only at the 90% confidence 

level. 

Snow Cover Fraction 

 Visual comparison of snow cover extent in WRF V3.4/Noah-MP and MODSCAG 

reveals both similarities and occasional differences between WRF and MODSCAG. Overall, 

visual comparison suggests that the boundaries of SCA are well matched in WRF V3.4/Noah-

MP and MODSCAG. However there are exceptions, especially in the early season when SCA is 
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rapidly increasing (Figure 4a-c). These differences are likely due to cloud contamination of 

MODSCAG. Should a snowstorm move into the area, WRF captures the increase in snow cover 

as it occurs (Figure 4a), but MODSCAG must wait for clear skies to confirm a change in snow 

cover (Figure 4b). A reliable model simulation of SCF would provide a continuous SCF record 

regardless of clouds. 

 While there are sometimes discrepancies in SCA early in the accumulation season, WRF 

V3.4/Noah-MP and MODSCAG are generally in agreement during mid-winter when snow cover 

is at its greatest extent. On January 1 (Figure 4d-f), which represents a typical mid-winter day, 

the geographic boundaries of snow cover in the two datasets match closely. In Figure 4e, 

MODSCAG SCF values near 1.0 (red areas) cover a large portion of the region, which match 

high SCF values in WRF V3.4/Noah-MP (Figure 4d). However, WRF V3.4/Noah-MP still tends 

to have less variability. The snow cover extent of the two datasets on April 1 (Figure 4g-i) 

matches reasonably well. During the melt season, the eastern boundary of WRF V3.4/Noah-MP 

and MODSCAG are in agreement, but WRF V3.4/Noah-MP has more snowy pixels toward the 

western edge of the Sierra Nevada (Figure 4j-l). 

 We investigate the snow cover to reveal any apparent biases in snowpack extent over the 

whole domain. First we evaluate the number of snowy pixels (i.e. where SCF > 0.15, Figure 5). 

The seasonal cycle in the number of snowy pixels allows us to determine the accuracy of 

WRF/Noah simulations. As with SWE metrics, there is an improvement in WRF V3.4/Noah-MP 

over V3.1/Noah during the melt season. While WRF V3.1/Noah simulates melt early, producing 

a snow-free domain a month before MODSCAG, WRF V3.4/Noah-MP shows more gradual 

melt, closely matching observed patterns from MODSCAG. Especially during summer melt in 

June and July WRF V3.4/Noah-MP and MODSCAG are in near-perfect agreement, in 
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comparison to the large discrepancies between WRF V3.1/Noah and MODSCAG during these 

months. For the rest of the year, neither WRF V3.4/Noah-MP nor MODSCAG show a bias 

relative to the other. The two datasets have similar variability and WRF even reproduces the 

transient peaks of SCA associated with storm events seen in MODSCAG. The root mean squared 

error (RMSE) between WRF V3.4/Noah-MP and MODSCAG is 206.5 (21%) snowy pixels. The 

overestimation of snowy pixels from April to July in the WRF V3.4/Noah-MP simulation likely 

contributes to the majority of the RMSE. 

 We also analyze total SCA by comparing the simulated WRF V3.4/Noah-MP value with 

both versions of MODSCAG, the original and the vegetation-corrected version (Figure 6). By 

correcting for the presence of vegetation, the SCA as observed by MODSCAG dramatically 

increases. While both datasets have similar SCA magnitudes during melt in June and July, other 

months show increases of almost 10,000 km
2
 in the vegetation-corrected MODSCAG. 

Considering the amount of snow under canopies has a large effect on the total SCA. The 

corrected MODSCAG closely matches the WRF V3.4/Noah-MP total SCA from November 

through April. Only once melt begins do the two datasets begin to differ. The RMSE between the 

simulated and observed total SCA is 1863.9 km
2
 (24%) for MODSCAG V3 and 4588.8 km

2
 

(100%) for MODSCAG V3. After adjusting for vegetation, MODSCAG and WRF V3.4/Noah-

MP are in better agreement for total SCA. 

 Though the WRF V3.4/Noah-MP results indicate improvements in SCA simulation over 

the whole domain, examination of SCF in a single land-cover type may reveal potential biases. 

In the WRF and the MODIS land cover products, sparsely vegetated areas make up only about 

1% of the WRF domain, largely at the highest elevations in the southern portion of the study area 

(Figure 3). Both land cover classification schemes show similar, but not identical, unvegetated 
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regions. In each case, WRF SCF values in unvegetated regions are higher than MODSCAG 

values throughout the period of snow cover (Figure 7). WRF also shows less variability during 

the peak snowpack season between December and April. The fact that WRF SCF stays near 1.0 

suggests that once WRF determines a 3x3 km cell is snow-covered, it remains so for the rest of 

the season. MODSCAG, which demonstrates more variability, exhibits more gradual increases 

and decreases in SCF than either version of WRF. For WRF V3.4/Noah-MP, unvegetated SCF 

increases to 0.8 in 3 days, compared to 31 days in MODSCAG. During ablation in the summer, 

SCF decreases from a snow accumulation event in late May to an average SCF value of less than 

0.01 over 44 days for WRF V3.4/Noah-MP and 55 days for MODSCAG. WRF V3.1/Noah and 

WRF V3.4/Noah-MP show similar patterns (a plateau effect) through May when the records 

begin to deviate. While both LSMs show a quick decease in SCF, Noah declines a month earlier 

than Noah-MP. By early June, Noah no longer classifies any of the unvegetated pixels as having 

a substantial SCF. In contrast, Noah-MP has snow cover to the beginning of July. During the 

spring melt, when Noah SCF values for unvegetated pixels approximate zero, Noah-MP has 

values ~0.8. 

 The high values of SCF for unvegetated areas in WRF suggest that WRF treats SCF as a 

binary metric in mountainous regions where snowpack is deep. SCF for the barren regions of the 

Sierra Nevada essentially plateaus near 1.0 from December to May/June. To determine whether 

this is true only for high-elevation unvegetated pixels or whether it is common to all WRF pixels, 

we compare the mean monthly SCF for all WRF pixels in the domain to the average of the 36 

corresponding MODSCAG pixels. A two-pixel buffer zone around the edge of the model domain 

is removed due to model artifacts in these areas. The whole-domain output for WRF V3.4/Noah-

MP (Figure 8) shows that the Noah-MP LSM nearly always classifies pixels as either no snow or 
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fully covered. Particularly in March and April, SCF in WRF V3.4/Noah-MP is essentially 

binary, with either snow (SCF = 1) or no snow (SCF = 0). Very few values fall in between. In 

contrast, MODSCAG exhibits a wide range of values of SCF. 

 

5.  Discussion and Conclusion 

 Our results indicate that WRF with the Noah-MP LSM can, on average, accurately 

simulate SWE for mountainous environments. One of the largest problems with WRF V3.1/Noah 

found in PKH2011, early snowmelt, has been addressed in WRF V3.4/Noah-MP. We see an 

improvement in the simulated timing of SCD in WRF V3.4/Noah-MP compared with WRF 

V3.1/Noah. Therefore WRF V3.4/Noah-MP can likely be used to simulate temporal variability 

in snowpack in poorly observed mountain environments, which includes most of the world’s 

mountainous regions outside the Western United States. Additionally, the ability to reliably 

model SWE suggests that we can simulate future changes in snowpack associated with 

anthropogenic climate forcings. Reliable model projections can prepare communities for future 

conditions, including changes in water supply quantity and timing.  

 For the whole-domain SCF, WRF V3.4/Noah-MP improves upon WRF V3.1/Noah and 

has realistic variability that matches the observations from MODSCAG. Figure 6 in particular, 

showing total SCA, suggests that WRF V3.4/Noah-MP closely matches the new vegetation-

corrected MODSCAG, with similar SCA magnitudes for the entire winter until melt begins. 

However, averaging over the entire domain also hides potential biases in some land cover types. 

In particular, there are biases in how WRF V3.4/Noah-MP handles unvegetated areas. The binary 

pattern of SCF in WRF is a product of the snow depletion equation included in Noah-MP. Niu 

and Yang (2007) implemented the following equation for SCF into Noah-MP: 
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Where      is snow depth in meters,     is the ground roughness length (equal to 0.01 m),      

is snow density in kg m
-3

,      is fresh snow density (equal to 100 kg m
-3

), and   is a 

dimensionless melting factor. The default   value is 1.0. 

 When using typical values of snow depth and snow density for the central Sierra Nevada, 

we can calculate the expected value of SCF (Figure 9a, based on Figure 1b from Niu and Yang 

(2007)). Regardless of snow density, at a depth of 0.2 m Noah-MP calculates a SCF value of at 

least 0.9. This compares to typical snow depth values in the central Sierra Nevada in WRF 

V3.4/Noah-MP of 0.5 – 1.5 m during the snow-covered season. As a result, a melting factor of 

1.0 leads to SCF curves that quickly become fully snow covered.  

 With larger values of  , the SCF requires deeper snow to reach full cover (Figure 9b). 

Therefore greater   values may lead to a better match between WRF and MODSCAG. We re-

ran WRF V3.4/Noah-MP with   values of 1.6 (suggested in Niu and Yang (2007) for coarse 

resolution models), 2.5, and 5.0. Scatterplots for SCF values comparing WRF and MODSCAG 

are shown in Figure 10. Large values of   (  = 5.0, as in Figure 10g-i) have points clustered on 

the one-to-one line when snow is accumulating (November and December) but does not simulate 

conditions well in January. In contrast, smaller values of   (  = 1.6, 2.5 in Figures 10a-c, 10d-f, 

respectively) may work better in January. A single equation for the entire year limits how well 

the model can simulate the range of possible conditions. 

 Besides altering the Noah-MP equations, improvements in SCF simulation could come 

from new methods of modeling SCF. A snow-depletion curve that is optimized for mountain 

environments could potentially improve simulation of SCF in WRF. Considering the fact that 
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Noah-MP struggles with modeling SCF in individual mountainous pixels (Niu and Yang, 2007), 

a new parameterization based on actual snow cover depletion in mountain environments could 

solve the problem of near-binary snow cover WRF V3.4/Noah-MP. Several studies have 

developed SDCs to improve simulation of snowpack ablation. SDCs have been modeled as a 

three parameter lognormal distribution (Donald et al., 1995), a two parameter lognormal 

distribution (Liston, 2004), and as a two parameter Gamma distribution (Kolberg and Gottschalk, 

2006). Often a SDC is coupled with models to improve energy balance and mass balance 

calculations (Donald et al., 1995; Luce and Tarboton, 2004). Most of the depletion equations 

require knowledge of the coefficient of variation of the snow cover for the region of interest 

(Donald et al., 1995; Liston, 2004; Luck and Tarboten, 2004; Girotto et al., 2013). Girotto et al. 

(2013) demonstrate that the SDC developed by Liston (2004) can be coupled to a LSM to 

reconstruct montane snowpack in the Sierra Nevada without in situ data, providing the potential 

for wide spread use on regions without numerous observations. Future work could incorporate 

the Liston (2004) SDC into WRF/Noah-MP to attempt to improve SCA simulation during the 

ablation season. 

 For the whole domain of the central Sierra Nevada, regional models can simulate SCA 

with reasonable accuracy. WRF V3.4/Noah-MP captures the seasonal pattern of SCA when 

compared with MODSCAG SCA values. WRF V3.4 and Noah-MP, in combination, produce 

simulations that would be useful for future predictions of SCA for the entire region. However on 

a pixel-by-pixel basis, WRF V3.4/Noah-MP fails to accurately simulate SCF and produces 

artificially binary SCF values. Biases in unvegetated regions indicate that models cannot yet 

simulate SCF over a grid cell with a heterogeneous surface. The ability to perform these 

simulations accurately has important ramifications for simulation of the surface energy balance 
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and related atmospheric conditions. Without mountain-specific SCF formulations, discrepancies 

between model and observational SCF values are likely to persist.  
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8.  Figures  

 
Figure 1.  (a) Model domain of the central Sierra Nevada for the 3 km WRF simulation. (b) 

Simulated topography from WRF V3.4/Noah-MP. Elevation is in meters. Black dots indicate 

locations of snow pillows. 

 

 
Figure 2.  SWE centroid date (SCD) error and elevation difference between model simulations 

and snow pillow observations. (a) WRF V3.4/Noah-MP shows substantial improvement in SCD 

simulation compared to (b) WRF V3.1/Noah. Subplot (b) is reproduced from Figure 7c in 

PKH2011. 

 



22 
 

 
Figure 3.  Unvegetated pixels in the land cover classification scheme in (a) WRF and (b) 

MODIS. The yellow line separates elevations above and below 2200 m. 
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Figure 4.  Snow cover extent comparison WRF V3.4/Noah-MP and MODSCAG over the model 

domain on (a-c) November 25, (d-f) January 1, (g-i) April 1, and (j-l) June 1. The left column is 

WRF V3.4/Noah-MP SCF, the center column is MODSCAG SCF, and the right column is the 

difference in SCF values between WRF V3.4/Noah-MP and MODSCAG.  
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Figure 5. Comparison of the number of domain-wide “snowy” pixels for WRF V3.4, WRF 

V3.1, and MODSCAG V3. A pixel is classified as snowy for SCF > 0.15. Results for 

MODSCAG V2 are not shown as they are almost identical to V3. 

 

 

 

 
Figure 6.  Total snow cover (in km

2
) of the model domain. The black line is WRF V3.4/Noah-

MP, the dotted black line is WRF V3.1/Noah, the red line is MODSCAG V2, and the blue line is 

the vegetation-corrected MODSCAG V3. Correcting for snow cover under canopies results in 

WRF and MODSCAG being in close agreement for a large portion of the study period. 
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Figure 7.  Seasonal pattern of average SCF values for unvegetated pixels above 2200 m for the 

WRF land cover classification scheme. A similar pattern was found for the MODIS land cover 

classificaiton scheme, though not shown here. 
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Figure 8.  Scatterplots for WRF V3.4/Noah-MP SCF values vs. MODSCAG SCF values over the entire domain. In each plot, WRF 

V3.4/Noah-MP becomes a binary SCF classifier. 

 

 



27 
 

 

Figure 9.  Expected SCF value based on snow depth (m) and snow density (kg m
-3

). Reproduced 

from Figure 1b from Niu and Yang (2007).  
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Figure 10.  Scatterplots of WRF SCF vs. MODSCAG SCF for different melting factors, m, over 

the entire model domain. The top row is m=1.6, the middle is m=2.5, and the bottom row is 

m=5.0. At higher m values, WRF V3.4/Noah-MP stops behaving as a binary flag and shows 

increased variability in SCF values. 

 

 

 


