3,524 research outputs found

    Ultraluminous Infrared Galaxies

    Full text link
    At luminosities above ~10^{11} L_sun, infrared galaxies become the dominant population of extragalactic objects in the local Universe (z < 0.5), being more numerous than optically selected starburst and Seyfert galaxies, and QSOs at comparable bolometric luminosity. At the highest luminosities, ultraluminous infrared galaxies (ULIGs: L_ir > 10^{12} L_sun), outnumber optically selected QSOs by a factor of ~1.5-2. All of the nearest ULIGs (z < 0.1) appear to be advanced mergers that are powered by both a circumnuclear starburst and AGN, both of which are fueled by an enormous concentration of molecular gas (~10^{10} M_sun) that has been funneled into the merger nucleus. ULIGs may represent a primary stage in the formation of massive black holes and elliptical galaxy cores. The intense circumnuclear starburst that accompanies the ULIG phase may also represent a primary stage in the formation of globular clusters, and the metal enrichment of the intergalactic medium by gas and dust expelled from the nucleus due to the combined forces of supernova explosions and powerful stellar winds.Comment: LaTex, 6 pages with 4 embedded .eps figures. Postscript version plus color plates available at http://www.ifa.hawaii.edu/users/sanders/astroph/s186/plates.html To appear in "Galaxy Interactions at Low and High Redshift" IAU Symposium 186, Kyoto, Japan, eds. J.E. Barnes and D.B. Sander

    Crystal-clear neuronal computing

    Get PDF
    Induced progressive crystallization in chalcogenide-based materials can be used to closely mimic neuronal functions, opening new paths to neuromorphic computing

    Sequential Effects in Judgements of Attractiveness: The Influences of Face Race and Sex

    Get PDF
    In perceptual decision-making, a person’s response on a given trial is influenced by their response on the immediately preceding trial. This sequential effect was initially demonstrated in psychophysical tasks, but has now been found in more complex, real-world judgements. The similarity of the current and previous stimuli determines the nature of the effect, with more similar items producing assimilation in judgements, while less similarity can cause a contrast effect. Previous research found assimilation in ratings of facial attractiveness, and here, we investigated whether this effect is influenced by the social categories of the faces presented. Over three experiments, participants rated the attractiveness of own- (White) and other-race (Chinese) faces of both sexes that appeared successively. Through blocking trials by race (Experiment 1), sex (Experiment 2), or both dimensions (Experiment 3), we could examine how sequential judgements were altered by the salience of different social categories in face sequences. For sequences that varied in sex alone, own-race faces showed significantly less opposite-sex assimilation (male and female faces perceived as dissimilar), while other-race faces showed equal assimilation for opposite- and same-sex sequences (male and female faces were not differentiated). For sequences that varied in race alone, categorisation by race resulted in no opposite-race assimilation for either sex of face (White and Chinese faces perceived as dissimilar). For sequences that varied in both race and sex, same-category assimilation was significantly greater than opposite-category. Our results suggest that the race of a face represents a superordinate category relative to sex. These findings demonstrate the importance of social categories when considering sequential judgements of faces, and also highlight a novel approach for investigating how multiple social dimensions interact during decision-making

    Amyloid-β nanotubes are associated with prion protein-dependent synaptotoxicity

    Get PDF
    Growing evidence suggests water-soluble, non-fibrillar forms of amyloid-β protein (Aβ) have important roles in Alzheimer's disease with toxicities mimicked by synthetic Aβ1-42. However, no defined toxic structures acting via specific receptors have been identified and roles of proposed receptors, such as prion protein (PrP), remain controversial. Here we quantify binding to PrP of Aβ1-42 after different durations of aggregation. We show PrP-binding and PrP-dependent inhibition of long-term potentiation (LTP) correlate with the presence of protofibrils. Globular oligomers bind less avidly to PrP and do not inhibit LTP, whereas fibrils inhibit LTP in a PrP-independent manner. That only certain transient Aβ assemblies cause PrP-dependent toxicity explains conflicting reports regarding the involvement of PrP in Aβ-induced impairments. We show that these protofibrils contain a defined nanotubular structure with a previously unidentified triple helical conformation. Blocking the formation of Aβ nanotubes or their interaction with PrP might have a role in treatment of Alzheimer's disease

    Fluidal pyroclasts reveal the intensity of peralkaline rhyolite pumice cone eruptions

    Get PDF
    This work is a contribution to the Natural Environment Research Council (NERC) funded RiftVolc project (NE/L013932/1, Rift volcanism: past, present and future) through which several of the authors are supported. In addition, Clarke was funded by a NERC doctoral training partnership grant (NE/L002558/1).Peralkaline rhyolites are medium to low viscosity, volatile-rich magmas typically associated with rift zones and extensional settings. The dynamics of peralkaline rhyolite eruptions remain elusive with no direct observations recorded, significantly hindering the assessment of hazard and risk. Here we describe uniquely-preserved, fluidal-shaped pyroclasts found within pumice cone deposits at Aluto, a peralkaline rhyolite caldera in the Main Ethiopian Rift. We use a combination of field-observations, geochemistry, X-ray computed microtomography (XCT) and thermal-modelling to investigate how these pyroclasts are formed. We find that they deform during flight and, depending on size, quench prior to deposition or continue to inflate then quench in-situ. These findings reveal important characteristics of the eruptions that gave rise to them: that despite the relatively low viscosity of these magmas, and similarities to basaltic scoria-cone deposits, moderate to intense, unstable, eruption columns are developed; meaning that such eruptions can generate extensive tephra-fall and pyroclastic density currents.Publisher PDFPeer reviewe

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    Enhanced lithium depletion in Sun-like stars with orbiting planets

    Full text link
    The surface abundance of lithium on the Sun is 140 times less than protosolar, yet the temperature at the base of the surface convective zone is not hot enough to burn Li. A large range of Li abundances in solar type stars of the same age, mass and metallicity is observed, but theoretically difficult to understand. An earlier suggestion that Li is more depleted in stars with planets was weakened by the lack of a proper comparison sample of stars without detected planets. Here we report Li abundances for an unbiased sample of solar-analogue stars with and without detected planets. We find that the planet-bearing stars have less than 1 per cent of the primordial Li abundance, while about 50 per cent of the solar analogues without detected planets have on average 10 times more Li. The presence of planets may increase the amount of mixing and deepen the convective zone to such an extent that the Li can be burned.Comment: 13 pages, 2 figure
    corecore