1,371 research outputs found

    Leaf:wood allometry and functional traits together explain substantial growth rate variation in rainforest trees

    Get PDF
    Plant growth rates drive ecosystem productivity and are a central element of plant ecological strategies. For seedlings grown under controlled conditions, a large literature has firmly identified the functional traits that drive interspecific variation in growth rate. For adult plants, the corresponding knowledge is surprisingly poorly understood. Until recently it was widely assumed that the key trait drivers would be the same (e.g. specific leaf area, or SLA), but an increasing number of papers has demonstrated this not to be the case, or not generally so. New theory has provided a prospective basis for understanding these discrepancies. Here we quantified relationships between stem diameter growth rates and functional traits of adult woody plants for 41 species in an Australian tropical rainforest. From various cost-benefit considerations, core predictions included that: (i) photosynthetic rate would be positively related to growth rate; (ii) SLA would be unrelated to growth rate (unlike in seedlings where it is positively related to growth); (iii) wood density would be negatively related to growth rate; and (iv) leaf mass:sapwood mass ratio (LM:SM) in branches (analogous to a benefit:cost ratio) would be positively related to growth rate. All our predictions found support, particularly those for LM:SM and wood density; photosynthetic rate was more weakly related to stem diameter growth rates. Specific leaf area was convincingly correlated to growth rate, in fact negatively. Together, SLA, wood density and LM:SM accounted for 52 % of variation in growth rate among these 41 species, with each trait contributing roughly similar explanatory power. That low SLA species can achieve faster growth rates than high SLA species was an unexpected result but, as it turns out, not without precedent, and easily understood via cost-benefit theory that considers whole-plant allocation to different tissue types. Branch-scale leaf:sapwood ratio holds promise as an easily measurable variable that may help to understand growth rate variation. Using cost-benefit approaches teamed with combinations of leaf, wood and allometric variables may provide a path towards a more complete understanding of growth rates under field conditions

    Resources for situated actions

    Get PDF
    In recent years, advances in software tools have made it easier to analyze interactive system specifications, and the range of their possible behaviors. However, the effort involved in producing the specifications of the system is still substantial, and a difficulty exists regarding the specification of plausible behaviors on the part of the user. Recent trends in technology towards more mobile and distributed systems further exacerbates the issue, as contextual factors come in to play, and less structured, more opportunistic behavior on the part of the user makes purely task-based analysis difficult. In this paper we consider a resourced action approach to specification and analysis. In pursuing this approach we have two aims - firstly, to facilitate a resource-based analysis of user activity, allowing resources to be distributed across a number of artifacts, and secondly to consider within the analysis a wider range of plausible and opportunistic user behaviors without a heavy specification overhead, or requiring commitment to detailed user models.We acknowledge with thanks EPSRC grant EP/F01404X/1 and FCT/FEDER grant POSC/EIA/56646/2004. Michael Harrison is grateful to colleagues in the ReSIST NoE (www.resit-noe.org)

    Use of auditory learning to manage listening problems in children

    Get PDF
    This paper reviews recent studies that have used adaptive auditory training to address communication problems experienced by some children in their everyday life. It considers the auditory contribution to developmental listening and language problems and the underlying principles of auditory learning that may drive further refinement of auditory learning applications. Following strong claims that language and listening skills in children could be improved by auditory learning, researchers have debated what aspect of training contributed to the improvement and even whether the claimed improvements reflect primarily a retest effect on the skill measures. Key to understanding this research have been more circumscribed studies of the transfer of learning and the use of multiple control groups to examine auditory and non-auditory contributions to the learning. Significant auditory learning can occur during relatively brief periods of training. As children mature, their ability to train improves, but the relation between the duration of training, amount of learning and benefit remains unclear. Individual differences in initial performance and amount of subsequent learning advocate tailoring training to individual learners. The mechanisms of learning remain obscure, especially in children, but it appears that the development of cognitive skills is of at least equal importance to the refinement of sensory processing. Promotion of retention and transfer of learning are major goals for further research

    The Dynamics of the India‐Eurasia Collision: Faulted Viscous Continuum Models Constrained by High‐Resolution Sentinel‐1 InSAR and GNSS Velocities

    Get PDF
    The distribution and magnitude of forces driving lithospheric deformation in the India-Eurasia collision zone have been debated over many decades. Here we test a two-dimensional (2-D) Thin Viscous Shell approach that has been adapted to explicitly account for displacement on major faults and investigate the impact of lateral variations in depth-averaged lithospheric strength. We present a suite of dynamic models to explain the key features from new high-resolution Sentinel-1 Interferometric Synthetic Aperture Radar as well as Global Navigation Satellite System velocities. Comparisons between calculated and geodetically observed velocity and strain rate fields indicate: (a) internal buoyancy forces from Gravitational Potential Energy acting on a relatively weak region of highest topography (>2,000 m) contribute to dilatation of the high plateau and contraction on the margins; (b) a weak central Tibetan Plateau (∼10²¹ Pa s compared to far-field depth-averaged effective viscosity of at least 10²²–10²³ Pa s) is required to explain the observed long-wavelength eastward velocity variation; (c) localized displacement on fault systems enables strain concentration and clockwise rotation around the Eastern Himalayan Syntaxis. We discuss the tectonic implications for rheology of the lithosphere, distribution of geodetic strain, and partitioning of active faulting and seismicity

    Scalar field exact solutions for non-flat FLRW cosmology: A technique from non-linear Schr\"odinger-type formulation

    Full text link
    We report a method of solving for canonical scalar field exact solution in a non-flat FLRW universe with barotropic fluid using non-linear Schr\"{o}dinger (NLS)-type formulation in comparison to the method in the standard Friedmann framework. We consider phantom and non-phantom scalar field cases with exponential and power-law accelerating expansion. Analysis on effective equation of state to both cases of expansion is also performed. We speculate and comment on some advantage and disadvantage of using the NLS formulation in solving for the exact solution.Comment: 12 pages, GERG format, Reference added. accepted by Gen. Relativ. and Gra

    The challenges of intersectionality: Researching difference in physical education

    Get PDF
    Researching the intersection of class, race, gender, sexuality and disability raises many issues for educational research. Indeed, Maynard (2002, 33) has recently argued that ‘difference is one of the most significant, yet unresolved, issues for feminist and social thinking at the beginning of the twentieth century’. This paper reviews some of the key imperatives of working with ‘intersectional theory’ and explores the extent to these debates are informing research around difference in education and Physical Education (PE). The first part of the paper highlights some key issues in theorising and researching intersectionality before moving on to consider how difference has been addressed within PE. The paper then considers three ongoing challenges of intersectionality – bodies and embodiment, politics and practice and empirical research. The paper argues for a continued focus on the specific context of PE within education for its contribution to these questions

    Escape Rates and Physically Relevant Measures for Billiards with Small Holes

    Get PDF
    We study the billiard map corresponding to a periodic Lorentz gas in 2-dimensions in the presence of small holes in the table. We allow holes in the form of open sets away from the scatterers as well as segments on the boundaries of the scatterers. For a large class of smooth initial distributions, we establish the existence of a common escape rate and normalized limiting distribution. This limiting distribution is conditionally invariant and is the natural analogue of the SRB measure of a closed system. Finally, we prove that as the size of the hole tends to zero, the limiting distribution converges to the smooth invariant measure of the billiard map.Comment: 39 pages, 4 figure

    The Recursive Record Semantics of Objects Revisited

    Get PDF
    In a call-by-value language, representing objects as recursive records requires using an unsafe fixpoint. We design, for a core language including extensible records, a type system which rules out unsafe recursion and still supports the reconstruction of a principal type. We illustrate the expressive power of this language with respect to object-oriented programming by introducing a sub-language for «mixin-based» programming
    corecore