77 research outputs found

    Laser Scanner Technology

    Get PDF
    This paper addresses the basic principles, performance measures and applications associated with laser scanner technologies. The objective of this report is to communicate and disseminate pertinent information related to state-of-the-art laser measurement systems that are currently available through commercial and research means. This paper should serve two-fold: (1) as a basic tutorial to laser scanning technology and (2) as a guide to current manufacturers and researchers of this technology

    Robust building scheme design optimization for uncertain performance prediction

    Get PDF
    Design exploration is a vital part of the building design process that aims at identifying the best-performing design with regard to the requirements of the client and building regulations. Building performance simulation can support this “explorative” process, its potential however being restricted by the fact that all design parameters are subject to uncertainty. In addition, while the need for an efficient exploration of the design space has resulted in the integration of optimization into the design process, the majority of existing research treats uncertainty quantification and optimization as separate processes. Finally, candidate designs are commonly evaluated with respect to only one or two design criteria, while the multi-dimensionality of real-world problems calls for integrated design solutions that meet several – often-conflicting – objectives. A new approach is thus developed that aims to help designers identify robust Pareto-optimal solutions that satisfy several design criteria, while remaining optimal regardless of the uncertainty in boundary conditions. Through its implementation to a real-world case-study building, the novel approach is found to be able to identify optimum solutions that preserve their optimality over the entire range of uncertain performance scenarios

    Early and detailed design stage modelling using Passivhaus design; what is the difference in predicted building performance?

    Get PDF
    In an effort to minimise the energy consumption in buildings, designers currently use a variety of energy simulation programs. However, despite the fact that those programs can make a significant contribution to the design of low energy buildings during the early design stage, the lack of detailed design information at that phase results in uncertainty in the modelled performance of the building. The uncertainty in building performance prediction has been the subject of previous research, yet no research to date has investigated the impact of design detail on the certainty of the performance prediction, this being the subject investigated in this paper. The paper reviews the potential source of design uncertainty at the early design stage, and investigates the impact of such uncertainty on the modelled performance of a small community centre located in the UK, this building being constructed to the Passivhaus standard. Although it is common for early design stage performance modelling tools to be different to those used in detailed design, this study is based on the use of the EnergyPlus simulation platform for both the early and detailed design performance prediction; this removes any uncertainty due to changes in the modelling tool, and allows conclusions to be drawn directly about the impact of design detail on the performance prediction

    Exhaustive search; does it have a role in explorative design?

    Get PDF
    Building performance simulation (BPS) is used routinely in design practice to evaluate the performance of candidate design solutions. However, two sources of uncertainty exist in the design process: in the selection of an optimum design solution; and in the predicted performance of the building (say, due to uncertain boundary conditions). These uncertainties can be evaluated and reduced through the use of an “explorative design” process, in which uncertainty quantification, multi-objective optimization, and sensitivity analysis are combined to provide information on the choice of robust and optimal design solutions. This paper investigates the use of an exhaustive search method to sample all combinations of design solutions and uncertain boundary conditions. The number of samples, and therefore the range of designs considered, are limited by the computation time of BPS. However, this paper concludes that design standards can be used to identify a viable range of design options, and that an exhaustive search applied to a limited design space provided enough information to identify and select robust design solutions. The paper also demonstrates the use of a new approach to identifying robust solutions that are guaranteed to remain optimal, regardless of the prevailing uncertainty in the boundary conditions

    Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models.

    Get PDF
    Campylobacter is the most common cause of foodborne bacterial illness worldwide. Faecal contamination of meat, especially chicken, during processing represents a key route of transmission to humans. There is a lack of insight into the mechanisms driving C. jejuni growth and survival within hosts and the environment. Here, we report a detailed analysis of C. jejuni fitness across models reflecting stages in its life cycle. Transposon (Tn) gene-inactivation libraries were generated in three C. jejuni strains and the impact on fitness during chicken colonisation, survival in houseflies and under nutrient-rich and -poor conditions at 4 °C and infection of human gut epithelial cells was assessed by Tn-insertion site sequencing (Tn-seq). A total of 331 homologous gene clusters were essential for fitness during in vitro growth in three C. jejuni strains, revealing that a large part of its genome is dedicated to growth. We report novel C. jejuni factors essential throughout its life cycle. Importantly, we identified genes that fulfil important roles across multiple conditions. Our comprehensive screens showed which flagella elements are essential for growth and which are vital to the interaction with host organisms. Future efforts should focus on how to exploit this knowledge to effectively control infections caused by C. jejuni.This work was funded by Biotechnology and Biological Sciences Research Council (http://www.bbsrc.ac.uk) grant BB/K004514/1. D.P.W. was funded by a Wellcome Trust (https://wellcome.ac.uk) Infection and Immunity PhD rotation studentship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project

    Get PDF
    Purpose: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). Methods: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. Results: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. Conclusion: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics
    corecore