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ABSTRACT 

Building performance simulation (BPS) is used 

routinely in design practice to evaluate the 

performance of candidate design solutions. 

However, two sources of uncertainty exist in the 

design process: in the selection of an optimum 

design solution; and in the predicted performance 

of the building (say, due to uncertain boundary 

conditions). These uncertainties can be evaluated 

and reduced through the use of an “explorative 

design” process, in which uncertainty 

quantification, multi-objective optimization, and 

sensitivity analysis are combined to provide 

information on the choice of robust and optimal 

design solutions. This paper investigates the use of 

an exhaustive search method to sample all 

combinations of design solutions and uncertain 

boundary conditions. The number of samples, and 

therefore the range of designs considered, are 

limited by the computation time of BPS. However, 

this paper concludes that design standards can be 

used to identify a viable range of design options, 

and that an exhaustive search applied to a limited 

design space provided enough information to 

identify and select robust design solutions. The 

paper also demonstrates the use of a new approach 

to identifying robust solutions that are guaranteed 

to remain optimal, regardless of the prevailing 

uncertainty in the boundary conditions.  

INTRODUCTION 

The aim of the building design process is to create a 

building that responds to the client’s needs while 

complying with building regulations. According to 

Laseau (2001), problem-solving in architectural 

design commonly involves five steps: 1) definition 

of the design problem; 2) generation of design 

alternatives; 3) evaluation; 4) selection; and 5) 

communication. To generate and evaluate candidate 

design solutions, the designer has to create several 

combinations of values for the available variables 

and assess their performance with respect to the 

objectives and constraints of the design problem. 

Based on the performed evaluation, the designer 

(decision-maker) can subsequently select the best-

performing option, this being the combination of 

values that provides the most satisfactory 

performance. 

However, under contemporary design practice, the 

selected design and its performance is subject to 

two forms of uncertainty: 

1. for any building, a high number of 

alternative design solutions exist; as such, 

there is uncertainty in the extent to which a 

design having an optimum performance 

has been selected; the difference between 

the performance of the selected design, 

and a truly optimum performance results 

in a “design gap”; 

2. for any design solution, there is 

uncertainty in the quality of construction 

(including thermal properties of materials), 

and behaviour of the boundary conditions 

(weather and occupant driven loads), this 

uncertainty manifesting itself as a 

“performance gap”. 

The uncertainty in identifying and selecting an 

optimum design solution is a form of epistemic 

(systematic) uncertainty, whereas, the uncertainty 

in the quality of construction and behaviour of the 

boundary conditions are forms of aleatoric 

(random) uncertainty. The epistemic uncertainty 

has an impact on the definition and selection of 

design alternatives, whereas the aleatoric 

uncertainty affects the certainty in the performance 

prediction of any design. 

“Explorative design” is an immerging paradigm in 

which numerical techniques are used to explore the 

uncertain design space in a way that increases the 

understanding of the relationship between the 

design solutions and probable performance of the 

building, this understanding aiding decision-making 

and the selection of an optimized design solution. 

The tools used in exploratory design are: 

1. sensitivity analysis (SA): this providing 

information on the sensitivity of the design 

objectives and constraints to changes in 

the value of the design (epistemic) 

variables; 

2. multi-objective optimization (MOO): 
this providing information on the 
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relationship between the design solutions 

(the epistemic variables), and the trade-off 

between conflicting design objectives; 

since all solutions identified by the MOO 

are known to have optimal performance, 

MOO also removes the uncertainty 

associated with selecting a design solution 

and it eliminates the “design gap”; 

3. uncertainty analysis (UA): for all design 

solutions, UA provides information on the 

probable range of building performance 

that results from the uncertainty in the 

construction and boundary conditions (the 

aleatoric variables); SA and MOO are 

therefore applied to probabilistic, rather 

than deterministic, design objectives. 

This paper considers the use of MOO and UA in 

building design optimization. In particular, the 

paper investigates the use of an exhaustive search 

method in generating all possible combinations of 

epistemic and aleatoric variables. The resulting set 

of design solutions and uncertain performance 

conditions, are post-processed to identify an 

optimal set of solutions that minimise the value of 

the design objectives regardless of the (aleatoric) 

uncertainty in the building performance prediction. 

The addition of SA to the process and consideration 

of the extra information that this can generate, will 

form part of future research. 

The approach is demonstrated in this paper for its 

use in the simultaneous design optimization of the 

form of wall construction, simple window and 

shading geometries, and the heating system control 

setpoints and operating period. The performance of 

each candidate design solution is associated with 

uncertain weather conditions and occupant driven 

internal loads. Although the parametric design 

example presented here relates to scheme and 

detailed design stages, the approach can be applied 

to earlier architectural design stages, provided that 

suitable “performance metrics” can be defined by 

the architect. 

Uncertainty Analysis and Multi-objective 

Optimization 

In the majority of existing research, the techniques 

of UA and MOO have been treated as separate 

design processes. For instance, Hopfe et al (2013), 

describe an approach to multi-criterion decision-

making that incorporates uncertain building 

performance, but which does not include 

optimization in the search for an optimum solution. 

Similarly, the majority of existing research into 

MOO is based on the use of Evolutionary 

Algorithms (EA), but without consideration of the 

uncertainty in the building performance (Evins, 

2013). However, Van Gelder et al (2013), and Nix 

et al (2015), describe approaches for probabilistic 

MOO. While Nix et al (2013), use an EA for the 

optimization, Van Gelder et al (2014), advocate the 

use of a “full factorial” exhaustive search, but one 

in which a sensitivity analysis is used to reduce the 

design space before performing the optimization. 

Both have probabilistic objective functions that 

attempt to minimise both the mean value and 

possible spread of the objective function values. 

Other methods for evolutionary MOO with 

uncertainty are also described by Goh and Tan 

(2009).  

Exhaustive Search – Potential and Limitations 

This paper is focused on investigating the use of an 

exhaustive search in the MOO of buildings with 

uncertain performance objectives. An exhaustive 

search is one in which all possible solutions are a 

evaluated. As such, there is no “search direction” or 

formal identification of the optimum solutions, with 

the optimum solutions being identified through the 

post-processing of all solutions. 

An exhaustive search offers several advantages 

over other search methods. First, since all possible 

design solutions and uncertain performance 

conditions are evaluated, it provides the maximum 

possible information for use in decision-making. 

This is particularly important for an a posteriori or 

progressive decision-making approach where the 

design criteria and focus may change within the 

decision-making process. Such flexibility is limited 

when a conventional (say EA), optimization 

method is used, as only a sub-set of all possible 

solutions are available, with the result that a change 

in design focus (criteria), is likely to require a re-

run of the optimization process. A caveat to the 

flexibility provided by an exhaustive search is that 

all criteria likely to be used in the decision-making 

must be evaluated during the exhaustive search. In 

contrast, a conventional MOO only identifies a sub-

set of the total number of solutions, these being 

defined by the a priori definition of the 

optimization objectives. As such, it is not possible 

to explore changes to the definition of optimality 

(say by say changing the number or form of the 

objectives); any change in the problem definition 

requiring a re-run of the optimization. 

Second, the optimization process is not limited by 

the number of objective functions or constraints. 

Many of the MOO methods used in current 

building research seek the trade-off between only 

two objectives since several of the algorithms are 

ineffective in solving “many objective” 

optimization problems. An exhaustive search is 

immune to the computation difficulties of finding 

optima in a many-objective search space, since this 

is an easily implemented post-processing problem. 

In comparison to other optimization methods, 

exhaustive search is also one of the easiest to 

implement, and is fully scalable in terms of its 

parallel implementation (in contrast, the extent to 



which an EA can be implemented using a parallel 

execution, tends to be limited by the population 

size). 

Third, the results can be post-processed for the first 

and second order sensitivities using a “one-at-a-

time” approach. 

The limitation of an exhaustive search is readily 

apparent in that the number of solutions to be 

evaluated increases as a product of the number of 

values for each variable (both epistemic and 

aleatoric variables in this case). The longest 

computation time in building optimization results 

from the building performance simulation (BPS). 

This has resulted in the use of fast executing 

surrogate models of the building performance 

(among others; Van Gelder et al, 2013; Nix et al, 

2015; Brownlee and Wright, 2015). However, the 

accuracy of these models introduces further 

uncertainty to the optimization process, and so in 

this paper, we consider an approach in which all 

design solutions are evaluated using the full BPS.  

The use of a full BPS limits the number of solution 

evaluations that can be performed in a practicable 

time. The practicable time and associated number 

of simulations are dependent on the complexity of 

the building being modelled (for instance, the 

number of heat transfer surfaces), and the 

computing power available. In this paper, an 

arbitrary limit of 10,000 simulations is adopted, this 

however being partly informed by previous 

research that set a practicable limit for a 

deterministic optimization of 5,000 simulations 

(Brownlee and Wright, 2015); the extra simulations 

have been allowed due to the increased problem 

and decision-making complexity introduced 

through the aleatoric variables. 

Limiting the number of solutions in turn limits the 

number of variables and value options for each 

variable. For example, if the number of value 

options (𝑁𝑣𝑎𝑙), is set to be the same for all 

variables, the relationship between the nearest 

number of variables (𝑁𝑣𝑎𝑟) and the number of 

solutions (𝑁𝑠𝑜𝑙), is given by: 

𝑁𝑣𝑎𝑟 = ⌊
𝑙𝑜𝑔(𝑁𝑠𝑜𝑙)

𝑙𝑜𝑔(𝑁𝑣𝑎𝑙)
    (1) 

Given a maximum of 10,000 solutions and say, 3 

value options for each variable, equation (1) gives 8 

variables (and a reduced search space of 6561 

solutions). If say, two of the variables are uncertain 

(aleatoric) boundary conditions, then the design 

search space is reduced to just 729 solutions 

(= 6561 (3 × 3)⁄ ). This example raises two 

questions: first, given the limited search space, can 

any useful information be gained from the use of an 

exhaustive search? Second, given the limited 

options for each variable, can they be assigned 

meaningfully values? 

Research Aims 

In the context of the use of an exhaustive search 

with a limited number of solution evaluations, this 

paper aims to investigate: 

1. an approach to the selection of a limited 

number of variables, and value options for 

each variable; 

2. the extent to which any useful information 

might be obtained from the limited number 

of design solutions; 

3. a new approach to identifying robust 

Pareto optimal solutions (“robust” here 

being solutions whose optimality are 

immune to the aleatoric uncertainty). 

METHODOLOGY 

There are three core elements to the research 

methodology applied in this paper: the 

identification of a case-study building form; the 

development and discussion of the design 

optimization problem; and the development of a 

new approach to identifying robust design 

solutions. 

Case Study Building and Performance 

Simulation 

This study is based on the simple single-zone office 

building that has been derived from a Building 

Energy Simulation Test (BESTEST), building 

(Judkoff and Neymark 1995). Figure 1, illustrates 

that the building has no doors and two large south-

facing windows that are shaded by a large 

overhang. 

 

Figure 1, Case-study Building 

The performance of the building is simulated using 

the EnergyPlus simulation engine. The simulation 

includes zone heating, but not mechanical cooling. 

Ventilation is provided at a constant rate of 0.04 

m
3
/s, this being equivalent to 10 l/s per occupant at 

full occupancy (4 persons); ventilation and heating 

are available all year from the specified system 

start-time (this being a design variable), until the 

end of occupancy. Electrical equipment loads are 

set at 110W/person and lighting at 8W/m
2
. Both the 

electrical and lighting loads are varied in direct 

proportion to the number of occupants; the demand 

for artificial lighting is further controlled by two 

light sensors located in the middle of the space and 



having an illuminance setpoint of 500lux. 

Occupancy is from 08:00 to 17:00. 

Problem Definition: Design Objectives 

The study in this paper is based on 3 objective 

functions: annual energy use; hours of under-

heating; and hours of over-heating. All three 

criteria are to be minimised. The annual energy use 

is a function of heating energy use, and the energy 

used in artificial lighting. Hours of under and over-

heating are based on a comfort limit of +/-0.5 PMV 

(Predicted Mean Vote), under-heating being a count 

of occupied hours for which the PMV is below -0.5 

and over-heating a count of hours above +0.5 PMV. 

+/-0.5PMV is a common target for occupant 

thermal comfort (ASHRAE, 2013). 

Problem Definition: Epistemic Design Variables 

The exhaustive search demands that the number of 

variables and value options are limited. 8 variables 

have been identified in this paper due to their 

potential influence on the design objectives: the 

type of wall construction, type of roof construction, 

infiltration rate, glazing type, window-to-wall ratio 

(WWR), depth of shading overhang, heating 

setpoint, and heating start time (Table 1). 

The number of value options for each variable is 

limited by real-world consideration of the design 

parameter. In particular, the options for the type of 

wall and roof construction have been developed to 

be compliant with two standards: the Approved 

Document L2A of the UK Building Regulations 

(UK Government, 2013) and the higher standard of 

thermal insulation (U-value), described by the 

Passivhaus Standard (Mead and Brylewski 2010). 

Two options have been selected to be compliant 

with each standard, a thermally lightweight 

construction (LW), and a thermally heavyweight 

construction (HW). The Architects’ Data book by 

Neufert et al (2012), has been used as a guide for 

creating the Part L (PL) constructions, while the 

Passivhaus (PH), constructions have been 

developed according to a catalogue of ecologically 

rated constructions (Einheiten, 2009) and the 

Passivhaus guide of the Association for 

Environment Conscious Building (AECB, 2007). 

The purpose of selecting two constructions that 

have the same U-value but a different thermal mass, 

is to test the impact of thermal mass on optimum 

energy use and over-heating risk. 

Building Regulations Part L and Passivhaus 

Standard have also been used as a guide for 

defining the values for the infiltration rate as well 

as the type of glazing units, these representing real-

world products as given in the Spon’s Architect’s 

and Builder’s price book (AECOM, 2015).  

 

 

Table 1 Variables and Assigned Values 

Type Variable 

Number 

of 

options 

Values 

E
p

is
te

m
ic

 

Wall 

construction 
4 

1. HW-PH 

2. HW-PL 

3. LW-PH 

4. LW-PH 

Roof 

construction 
4 

1. HW-PH 

2. HW-PL 

3. LW-PH 

4. LW-PH 

Infiltration rate 2 

1. PH  

(0.05 ACH) 

2. PL 

(0.50 ACH) 

Glazing type 2 
1. PH  

2. PL 

WWR 2 
1. 55.6%  

2. 27.8%  

Overhang 2 
1. 1.0m  

2. 0.3m 

Heating 

setpoint 
3 

1. 19
o
C 

2. 21
o
C 

3. 23
o
C 

Start time 3 

1. 5:00 

2. 6:00 

3. 7:00 

A
le

a
to

ry
 

 

Occupancy 

schedule 
2 

1. 25%  

(1 person) 

2. 100%  

(4 persons) 

Weather file 2 
1. CIBSE  

2. IWEC 

Two WWRs of 55.6% and 27.8%, have been 

selected to indicate the broad choice of glazed area; 

the larger area is the default BESTEST case, with 

the smaller area being half the default case. The 

smaller area is achieved by halving the height of 

both windows (the width of the windows is fixed, 

and the window upper edge remains fixed in 

position). The Spon’s (AECOM, 2015), price book 

has also been used to help identify  the choice of 

overhang depth of 0.3m; the alternative depth is 

taken to be the default BESTEST case of 1.0m.  

The discrete values for the heating setpoint have 

been defined with respect to the CIBSE Guide A 

(CIBSE, 2006), according to which the winter 

operative temperature should vary between 21
o
C 

and 23
o
C for an office space. A cooler scenario of 

19
o
C is also considered. 



Problem Definition: Aleatoric Boundary 

Variables 

Aleatoric uncertainty is included through two 

boundary conditions: the source of weather data; 

and occupant density, with the heat gains from 

equipment and artificial lighting also being varied 

in proportion to the occupant density. A uniform 

probability of selection is applied to both boundary 

conditions. 

 

Even though they may have been formed for the 

same purpose (say predicting annual energy use), 

different sources of weather data are known to have 

an effect on the results of building design 

optimization (Pernigotto et al, 2015). In this paper, 

two alternative sources of weather data have been 

used: the test reference year (TRY), formulated by 

the CIBSE (CIBSE, London, UK); and the IWEC 

TRY available through the EnergyPlus simulation 

distribution site. 

 

The estimation of occupant profiles and more 

particularly, the associated equipment loads, is non-

trivial (Page et al, 2008; Menezes et al, 2014); in 

this paper, two extremes of occupant density and 

equipment loads are taken, 100% occupancy (4 

people), and 25% occupancy (the lowest limit of 1 

person). 

Identification of Robust Solutions 

This paper is focused on examining the use of an 

exhaustive search in the identification of Pareto 

optimum solutions for the trade-off between three 

design objectives, the value of the objectives being 

uncertain for a given design solution. 

 

The robustness of a design solution having 

uncertain performance can be defined in several 

ways (Rysanek and Choudhary, 2013), but in 

MOO, a common approach is to form optimization 

objectives from the mean or median performance 

values together with a value of performance spread 

(Van Gelder and Roels, 2014; Nix et al, 2015). For 

instance, the optimization objective could be 

formed to be u+α× σ, where u is the mean objective 

function value and σ its standard deviation. If α is 

taken as 1.0, this results in objective function 

values for which there is only a ~16% probability 

of the objective function value being worse (a 

worse value being a higher value in this case). This 

approach is useful when the uncertainty in the 

objective function value has been evaluated using a 

statistical sample of the uncertain performance. 

However, since an exhaustive search provides all 

uncertain performance conditions (rather than just a 

sample of the conditions), it is possible to develop a 

more deterministic approach to judging the 

robustness of a design solution. 

 

The new approach developed in this paper is that 

robustness is not simply defined in terms of the 

statistical dispersion of the objective function 

values, but rather that, regardless of the prevailing 

(uncertain) boundary conditions, the selected 

design solution(s) should remain Pareto optimal. A 

corollary of this definition is that for all uncertain 

conditions, the performance of the building is 

always optimal (that is, the objective function 

values will always lie on the optimum Pareto trade-

off between the objectives).  

 

The approach is implemented in a two-stage 

process: 

1. find the Pareto set of solutions for each 

combination of the uncertain conditions 

(there being 4 combinations in this paper; 

Table 2); 

2. for each possible design solution, count 

the number of uncertain combinations for 

which the solution is Pareto optimal; a 

count of 0 indicates that regardless of the 

boundary conditions, the design solution is 

always sub-optimal; a count equal to the 

number of combinations of boundary 

conditions (4 in this paper), indicates that 

the solution has maximum robustness as it 

remains optimal regardless of the 

boundary conditions.  

RESULT AND ANALYSIS 

The results and analysis presented in this paper are 

restricted to: an analysis of the impact of the 

uncertain boundary (aleatoric), conditions on the 

Pareto optimality; the selection of a robust Pareto 

set; and to an analysis of the variation in the design 

solutions throughout the Pareto trade-off set. 

Performance Uncertainty and the Selection of 

Pareto Optimal Solutions 

The uncertain performance of a particular design 

solution is derived in this paper from 2 uncertain 

boundary conditions: the source of weather data; 

and the occupant density (and associated equipment 

heat gains). Each of the uncertain boundary 

conditions has 2 uniformly weighted choices, 

giving 4 uncertain performance conditions (Table 

2). 

 
Table 2, Uncertain Boundary Conditions 

Combination 

of Uncertain 

Boundary 

Condition 

Weather 

Source 

Number 

of 

Occupants 

Number 

of Pareto 

Design 

Solutions 

(a) CIBSE 1 157 

(b) CIBSE 4 259 

(c) IWEC 1 217 

(d) IWEC 4 283 

 



Table 2 indicates that the number of Pareto optimal 

solutions for the minimization of all three objective 

functions, varies with the combination of uncertain 

boundary conditions, the variation being between 

6.8% and 12.3% of the 2304 possible design 

solutions. It would appear that the IWEC weather 

file and higher occupant density, result in a larger 

Pareto set. Although the reasons for this have not 

yet been investigated, it should be noted that this is 

not an artifact of the optimization process, as there 

is no uncertainty in the convergence of an 

exhasutive search. It is also the case that the 

number of Pareto solutions is larger than the 

population sizes used with most EA in solving 

building optimization problems, and so these 

algorithms would have to be implemented with a 

solution archive in order to be able to capture the 

same number of Pareto optimal solutions.  

Robust Pareto Optimal Solutions 

Table 2 indicates that the number of Pareto optimal 

solutions varies with the uncertain conditions. The 

robust Pareto set is defined here to be the solutions 

that appear most frequently in the Pareto sets for all 

uncertain conditions. In this case, 66 of the 2304 

possible design solutions were included in the 

Pareto set for all uncertain boundary conditions; 

1866 of the possible design solutions were 

dominated (sub-optimal) and excluded from all 

Pareto sets.  

 

 
 

Figure 2, Robust Pareto Optimal Solutions 

Figure 2, illustrates the 66 robust Pareto design 

solutions as scatter plots for pairs of the 3 design 

objectives and the 4 uncertain performance 

conditions. Row labels (a) to (d) are for the 

combination of uncertain boundary conditions 

given in Table 2. A comparison of the solutions in 

rows (a) and (b), or (c) and (d), indicates that (as 

would be expected), an increase in occupancy (and 

associated equipment and lighting heat gains), 

results in a reduction in (heating) energy use, a 

reduction in underheating hours, but an increase in 

overheating hours. A comparison of rows (a) with 

(c), or (b) with (d), indicates that although the 

general trends are the similar, the source of weather 

data has an impact on the particular distribution of 

the solutions.  

Solution Trade-off Analysis 

Several techniques can be used to illustrate the 

relationship between the value of each design 

variable and the optimized trade-off (Brownlee and 

Wright, 2012). Some techniques, such as the rank-

ordering of solutions to find patterns in the choice 

of variable values, only work when two objective 

functions are considered. Given that this analysis is 

for three objectives, the analysis presented here is 

based on a parallel coordinate plot and a new 

approach (Figure 3), to examining the distribution 

of variable values within the Pareto set. 

 

 
 
Figure 3, Distribution of Variable Values for the Robust 

Pareto Optimal Solutions 

Figure 3, uses simplified box-plots to illustrate the 

distribution of design variable values for each 

objective. The distributions are for all 66 robust 

Pareto solutions and their associated uncertain 

performance conditions (4 per design solution). The 

(red) circles are the median values of the objective 

functions for all solutions having the particular 

variable value; the larger the circle, the higher the 

number of Pareto optimal solutions having the 

particvulaR value for the variable. A (red) cross at 

the centre of the range of objective values indicates 

that none of the Pareto optimal solutions contained 

this value for the particular variable. For instance, 

all Pareto solutions for infiltration had the 

infiltration set to the Passivhaus (PH) standard, 

with all “Part L” (PL) solutions being sub-optimal. 

Infiltration is an example of a “distance” variable 

(Brownlee and Wright, 2012) as a change in its 

value from “PH” to “PL” will move the whole 

Pareto front to a position were it is sub-optimal. 

The impact of such a change on the objective 

function values can be evaluated through the use of 

a sensitivity analysis, this being included in future 

research. The vertical bars in Figure 3 indicate the 

25
th

 (lower) and 75
th

 (upper) quartiles and the 

diamonds the minimum and maximum values. The 

figure indicates that the most frequently optimal 

(largest median circle), construction elements 

correspond to the heavy-weight Passivhaus 



standard (HW-PH); the choice of value for other 

variables is more evenly distributed, these variables 

most likely being categorised as “position” 

variables (Brownlee and Wright, 2012), with a 

change in value corresponding to a move of the 

solution along the trade-off. The figure also 

illustrates some predictable trends; for instance, the 

higher the heating setpoint temperature, the more 

energy is used and the lower the number of under-

heating hours.  

 

Although Figure 3 is useful in indicating the 

frequency that a particular variable value appears in 

the Pareto set (and the extent to which they may be 

categorised as “distance” or “position” variables), 

the plot does not show the relationship between 

variables. Figure 4, uses a parallel coordinate plot 

to show the relationship between all variable 

values, and the median objective function values, 

for all 66 robust Pareto solutions.  

 

 
 

Figure 4, Parallel Coordinate Plot of Robust Pareto 

Solutions 

Three solutions are emphasized; those having the 

lowest median energy use; lowest median under-

heating hours; and lowest median over-heating 

hours. For clarity, all other solutions have been 

plotted as faint dotted-lines. An example of the 

difference in interpretation of Figures 3 and 4 is 

that in the parallel coordinate plot, the system start-

time for minimum under-heating is 7am, just one 

hour before occupancy. However, this is counter to 

the conclusion that might be drawn from the 

independent analysis of the start-time in Figure 3, 

this suggesting that the underheating hours are 

minimised for the earlier start-time of 5am. The 

reason for the difference is that the parallel 

coordinate plot links the setpoint temperature to the 

required start-time, the under-heating hours being 

minimised with a higher setpoint temperature of 

23
o
C (and probable higher-capacity heating 

system). Several other observations can be drawn 

from the parallel coordinate plot, not least of which 

is that regardless of which criteria are minimised, 

the wall and roof constructions are always selected 

to be heavy-weight and conforming to the 

Passivhaus standard (HW; PH).  

DISCUSSION AND CONCLUSIONS  

An exhaustive evaluation of all combinations of all 

possible design solutions and uncertain boundary 

conditions has the potential to increase the 

understanding of the relationship between the 

design solutions and the design objectives, and to 

provide flexibility in an a posteriori decision-

making process.  

 

However, the long computation time associated 

with simulating the performance of a building 

limits the number of design options that can be 

evaluated in a practicable time. In this paper, it is 

suggested that a range of design options for each 

variable (such as the different types of wall 

construction), can be informed by the specifications 

given in one or more design standards. This 

approach also has the effect that the uncertainty in 

the validity of the design option is reduced since it 

is known to conform to at least one standard. 

 

The need to limit the computation time, and 

therefore the number of design solutions evaluated 

by the exhaustive search, might restrict the amount 

of useful information obtainable from the search. 

However, the results and analysis given in this 

paper demonstrate that, for the case-study building 

at least, a significant degree of understanding can 

be drawn from the limited range of design options. 

It is therefore concluded that as such, an 

“exhaustive search” has “a role in explorative 

design”.  

 

Further research is required to extend the number 

and type of aleatoric variables, and to investigate 

the application of the approach to more complex 

buildings that demand a larger number of design 

variables (say due to the need to optimize the 

WWR on each facade). The extension of the search 

space will most likely demand the use of a 

surrogate model (particularly those proven to work 

with mixed-integer construction variables; 

Brownlee and Wright, 2015). 

 

The paper also demonstrates the use of a new 

formulation for solution robustness that guarantees 

that the solution and building performance remain 

optimal, regardless of the prevailing boundary 

conditions. Further research is required to 

investigate its applicability to problems that have a 

larger number of aleatoric (boundary) conditions. 
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