172 research outputs found

    System Architecture Virtual Integration: A Case Study

    Get PDF
    International audienceAerospace industry is experiencing exponential growth in the size and complexity of onboard software. It is also seeing a significant increase in errors and rework of that software. All of those factors contribute to greater cost; the current development process is reaching the limit of affordability of building safe aircraft. An international consortium of aerospace companies with government participation has initiated the System Architecture Virtual Integration (SAVI) program, whose goal is to achieve an affordable solution through a paradigm shift of―integrate then build. A key concept of this paradigm shift is an architecture- centric approach to analysis of virtually integrated system models with respect to multiple operational quality attributes such as performance, safety, and reliability. By doing so early and throughout the life cycle at different levels of fidelity, system-level faults are discovered earlier in the life cycle—reducing risk, cost, and development time. The first phase of this program demonstrated the feasibility of this new development process through a proof of concept demonstration and a return on investment analysis, which are the topics of this paper

    Phosphor im Grünland – Antrieb der Leguminosen, aber Bremse der Phytodiversität?

    Get PDF
    In our study we investigated the effect of soil phosphorus (P) status on legume occurrence and on phytodiversity of organically managed permanent grassland sites. Therefore, we realized screenings on 2 m x 2 m plots with a clear spatial differentiation between the functional groups ‘legumes’ and ‘non-legumes’ on five mown pasture sites under organic management in north-eastern Germany. We found no significant difference between the phosphorus content of aboveground biomass of legumes and the associated non-legume group. However, we detected a significant difference between the soil PDL contents of these two groups with lower contents in soils of the legume patches whereas the different P fractions and thus different P availability on the mineral site could not explain the occurrence of legumes. Contrary to reports by many ecologists, we could not confirm a clear relationship between soil phosphorus and species number

    Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view

    Full text link
    Strategies to mitigate climate change through the use of biofuels (such as ethanol) are associated not only to the increase in the amount of C stored in soils but also to the reduction of GHG emissions to the atmosphere.This report mainly aimed to propose appropriate methodologies for the determinations of soil organic carbon stocks and greenhouse gas fluxes in agricultural phase of the sugarcane production. Therefore, the text is a piece of contribution that may help to obtain data not only on soil carbon stocks but also on greenhouse gas emissions in order to provide an accurate life cycle assessment for the ethanol. Given that the greenhouse gas value is the primary measure of biofuel product quality, biorefiners that can show a higher offset of their product will have an advantage in the market place

    Genetic and functional data identifying Cd101 as a type 1 diabetes (T1D) susceptibility gene in nonobese diabetic (NOD) mice

    Get PDF
    Type 1 diabetes (T1D) is a chronic multi-factorial disorder characterized by the immune-mediated destruction of insulin-producing pancreatic beta cells. Variations at a large number of genes influence susceptibility to spontaneous autoimmune T1D in non-obese diabetic (NOD) mice, one of the most frequently studied animal models for human disease. The genetic analysis of these mice allowed the identification of many insulin-dependent diabetes (Idd) loci and candidate genes, one of them being Cd101. CD101 is a heavily glycosylated transmembrane molecule which exhibits negative-costimulatory functions and promotes regulatory T (Treg) function. It is abundantly expressed on subsets of lymphoid and myeloid cells, particularly within the gastrointestinal tract. We have recently reported that the genotype-dependent expression of CD101 correlates with a decreased susceptibility to T1D in NOD.B6 Idd10 congenic mice compared to parental NOD controls. Here we show that the knockout of CD101 within the introgressed B6-derived Idd10 region increased T1D frequency to that of the NOD strain. This loss of protection from T1D was paralleled by decreased Gr1-expressing myeloid cells and FoxP3+ Tregs and an enhanced accumulation of CD4-positive over CD8-positive T lymphocytes in pancreatic tissues. As compared to CD101+/+ NOD.B6 Idd10 donors, adoptive T cell transfers from CD101−/− NOD.B6 Idd10 mice increased T1D frequency in lymphopenic NOD scid and NOD.B6 Idd10 scid recipients. Increased T1D frequency correlated with a more rapid expansion of the transferred CD101−/− T cells and a lower proportion of recipient Gr1-expressing myeloid cells in the pancreatic lymph nodes. Fewer of the Gr1+ cells in the recipients receiving CD101−/− T cells expressed CD101 and the cells had lower levels of IL-10 and TGF-β mRNA. Thus, our results connect the Cd101 haplotype-dependent protection from T1D to an anti-diabetogenic function of CD101-expressing Tregs and Gr1-positive myeloid cells and confirm the identity of Cd101 as Idd10

    Greenhouse gases from agriculture

    Get PDF
    The rapidly changing global climate due to increased emission of anthropogenic greenhouse gases (GHGs) is leading to an increased occurrence of extreme weather events such as droughts, floods, and heatwaves. The three major GHGs are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The major natural sources of CO2 include ocean-atmosphere exchange, respiration of animals, soils (microbial respiration) and plants, and volcanic eruption; while the anthropogenic sources include burning of fossil fuel (coal, natural gas, and oil), deforestation, and the cultivation of land that increases the decomposition of soil organic matter and crop and animal residues. Natural sources of CH4 emission include wetlands, termite activities, and oceans. Paddy fields used for rice production, livestock production systems (enteric emission from ruminants), landfills, and the production and use of fossil fuels are the main anthropogenic sources of CH4. Nitrous oxide, in addition to being a major GHG, is also an ozone-depleting gas. N2O is emitted by natural processes from oceans and terrestrial ecosystems. Anthropogenic N2O emissions occur mostly through agricultural and other land-use activities and are associated with the intensification of agricultural and other human activities such as increased use of synthetic fertiliser (119.4 million tonnes of N worldwide in 2019), inefficient use of irrigation water, deposition of animal excreta (urine and dung) from grazing animals, excessive and inefficient application of farm effluents and animal manure to croplands and pastures, and management practices that enhance soil organic N mineralisation and C decomposition. Agriculture could act as a source and a sink of GHGs. Besides direct sources, GHGs also come from various indirect sources, including upstream and downstream emissions in agricultural systems and ammonia (NH3) deposition from fertiliser and animal manure

    Micrometeorological methods for greenhouse gas measurement

    Get PDF
    Micrometeorological techniques are useful if greenhouse gas (GHG) emissions from larger areas (i.e. entire fields) should be integrated. The theory and the various techniques such as flux-gradient, aerodynamic, and Bowen ratio as well as Eddy correlationmethods are described and discussed. Alternativemethods also used areEddy correlation, mass balance techniques, and tracer-based methods.The analytical techniques with current state-of-the-art approaches as well as the calculation procedures are presented

    The Neuro-Glial Properties of Adipose-Derived Adult Stromal (ADAS) Cells Are Not Regulated by Notch 1 and Are Not Derived from Neural Crest Lineage

    Get PDF
    We investigated whether adipose-derived adult stromal (ADAS) are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC) displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC) media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca2+ transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD) did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH); and lineage tracing analyses using Wnt1–Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be a key regulator of their cellular and molecular characteristics

    Measured and Simulated Nitrous Oxide Emissions from Ryegrass- and Ryegrass/White Clover-Based Grasslands in a Moist Temperate Climate

    Get PDF
    There is uncertainty about the potential reduction of soil nitrous oxide (N2O) emission when fertilizer nitrogen (FN) is partially or completely replaced by biological N fixation (BNF) in temperate grassland. The objectives of this study were to 1) investigate the changes in N2O emissions when BNF is used to replace FN in permanent grassland, and 2) evaluate the applicability of the process-based model DNDC to simulate N2O emissions from Irish grasslands. Three grazing treatments were: (i) ryegrass (Lolium perenne) grasslands receiving 226 kg FN ha−1 yr−1 (GG+FN), (ii) ryegrass/white clover (Trifolium repens) grasslands receiving 58 kg FN ha−1 yr−1 (GWC+FN) applied in spring, and (iii) ryegrass/white clover grasslands receiving no FN (GWC-FN). Two background treatments, un-grazed swards with ryegrass only (G–B) or ryegrass/white clover (WC–B), did not receive slurry or FN and the herbage was harvested by mowing. There was no significant difference in annual N2O emissions between G–B (2.38±0.12 kg N ha−1 yr−1 (mean±SE)) and WC-B (2.45±0.85 kg N ha−1 yr−1), indicating that N2O emission due to BNF itself and clover residual decomposition from permanent ryegrass/clover grassland was negligible. N2O emissions were 7.82±1.67, 6.35±1.14 and 6.54±1.70 kg N ha−1 yr−1, respectively, from GG+FN, GWC+FN and GWC-FN. N2O fluxes simulated by DNDC agreed well with the measured values with significant correlation between simulated and measured daily fluxes for the three grazing treatments, but the simulation did not agree very well for the background treatments. DNDC overestimated annual emission by 61% for GG+FN, and underestimated by 45% for GWC-FN, but simulated very well for GWC+FN. Both the measured and simulated results supported that there was a clear reduction of N2O emissions when FN was replaced by BNF
    • …
    corecore