181 research outputs found

    Some Secrets of Fluorescent Proteins: Distinct Bleaching in Various Mounting Fluids and Photoactivation of cyan fluorescent proteins at YFP-Excitation

    Get PDF
    Background
The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins.

Methodology/Principal Findings
When we applied a commonly used FRET microscopy technique - the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10 - 15% after illumination at the YFP-excitation wavelength – a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor.

Conclusions/Significance
Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions

    Association between sedentary time and cognitive function: A focus on different domains of sedentary behavior.

    Get PDF
    Studies which examined the association between sedentary behavior (SB) and cognitive function have presented equivocal findings. Mentally active/inactive sedentary domains may relate differently to cognitive function. We examined associations between SB and cognitive function, specifically focusing on different domains. Participants were recruited from the Nijmegen Exercise Study 2018 in the Netherlands. SB (hours/day) was measured with the Sedentary Behavior Questionnaire. Cognitive function was assessed with a validated computer self-test (COST-A), and a z-score calculated for global cognitive function. Multivariate linear regression assessed associations between tertiles of sedentary time and cognitive function. Cognition tests were available from 2821 participants, complete data from 2237 participants (43% female), with a median age of 61 [IQR 52-67] and a mean sedentary time of 8.3 ± 3.2 h/day. In fully adjusted models, cognitive function was significantly better in participants with the highest total sedentary time (0.07 [95% CI 0.02-0.12], P = 0.01), work-related sedentary time (0.13 [95% CI 0.07-0.19], P  0.05). We found a strong, independent positive association between total SB and cognitive function in a heterogenous population. This relation was not consistent across different domains, with especially work- and computer-related SB being positively associated with cognitive function. This highlights the importance of assessing the various sedentary domains in understanding the relation between sedentary time and cognitive function

    Disorder Effects on Exciton-Polariton Condensates

    Full text link
    The impact of a random disorder potential on the dynamical properties of Bose Einstein condensates is a very wide research field. In microcavities, these studies are even more crucial than in the condensates of cold atoms, since random disorder is naturally present in the semiconductor structures. In this chapter, we consider a stable condensate, defined by a chemical potential, propagating in a random disorder potential, like a liquid flowing through a capillary. We analyze the interplay between the kinetic energy, the localization energy, and the interaction between particles in 1D and 2D polariton condensates. The finite life time of polaritons is taken into account as well. In the first part, we remind the results of [G. Malpuech et al. Phys. Rev. Lett. 98, 206402 (2007).] where we considered the case of a static condensate. In that case, the condensate forms either a glassy insulating phase at low polariton density (strong localization), or a superfluid phase above the percolation threshold. We also show the calculation of the first order spatial coherence of the condensate versus the condensate density. In the second part, we consider the case of a propagating non-interacting condensate which is always localized because of Anderson localization. The localization length is calculated in the Born approximation. The impact of the finite polariton life time is taken into account as well. In the last section we consider the case of a propagating interacting condensate where the three regimes of strong localization, Anderson localization, and superfluid behavior are accessible. The localization length is calculated versus the system parameters. The localization length is strongly modified with respect to the non-interacting case. It is infinite in the superfluid regime whereas it is strongly reduced if the fluid flows with a supersonic velocity.Comment: chapter for a book "Exciton Polaritons in Microcavities: New Frontiers" by Springer (2012), the original publication is available at http://www.springerlink.co

    Pretreatment haemoglobin levels significantly predict the tumour response to primary chemotherapy in human breast cancer

    Get PDF
    The purpose of this study was to evaluate whether tumour response to primary chemotherapy in human breast cancer is influenced by baseline haemoglobin (Hb) status. A total of 157 patients with T2-4, N0-1 M0 breast cancer were treated with chemotherapy consisting of either the CMF regimen + tamoxifen (the first 76 cases) or the single-agent epirubicin (the subsequent 81) before definitive surgery. In total, 144 patients were fully assessable. Ki67, p53, bcl-2, c-erbB2, steroid hormone receptor, and microvessel density were evaluated immunohistochemically in tumour specimens obtained before chemotherapy and at surgery. Tumour shrinkage >50% occurred in 72.1% of patients. Responding patients had higher baseline Hb levels and red blood cell counts than nonresponders (P<0.01 and <0.003, respectively). The distribution of disease response according to increasing cutoffs of baseline Hb status showed that from 12.5 mg l(-1) onwards, patients with Hb levels above the cutoff obtained a greater response rate than those with lower Hb values. The difference attained the statistical significance at 12.5 (76.1 vs 59.5%, P<0.05) and 13.0 g/dl(-1) (81.0 vs 57.6%, P<0.002) cutoffs, respectively. The predictive role of Hb levels was maintained in multivariate analysis after adjustment for clinical and biological characteristics and treatment regimen. Patients with baseline Hb levels </=13 g dl(-1) showed a lower treatment-induced reduction in Ki67 expression (P<0.04) and a higher Ki67 expression at postoperative evaluation (P<0.02) than their counterparts. In conclusion, low Hb levels may negatively influence the response rate of chemotherapy in breast cancer patients. Inhibition of antiproliferative activity could be a possible mechanism

    Aggravation of allergic airway inflammation by cigarette smoke in mice is CD44-dependent

    Get PDF
    Background : Although epidemiological studies reveal that cigarette smoke (CS) facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation. Methods : Wild type (WT) and CD44 knock-out (KO) mice were exposed simultaneously to house dust mite (HDM) extract and CS. Inflammatory cells, hyaluronic acid (HA) and osteopontin (OPN) levels were measured in bronchoalveolar lavage fluid (BALF). Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th) 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures. Results : In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS)/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice. Conclusion : We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics

    Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increased resistance of hypoxic cells to ionizing radiation is usually believed to be the primary reason for treatment failure in tumors with oxygen-deficient areas. This oxygen effect can be expressed quantitatively by the oxygen enhancement ratio (OER). Here we investigate theoretically the dependence of the OER on the applied local dose for different types of ionizing irradiation and discuss its importance for clinical applications in radiotherapy for two scenarios: small dose variations during hypoxia-based dose painting and larger dose changes introduced by altered fractionation schemes.</p> <p>Methods</p> <p>Using the widespread Alper-Howard-Flanders and standard linear-quadratic (LQ) models, OER calculations are performed for T1 human kidney and V79 Chinese hamster cells for various dose levels and various hypoxic oxygen partial pressures (pO2) between 0.01 and 20 mmHg as present in clinical situations <it>in vivo</it>. Our work comprises the analysis for both low linear energy transfer (LET) treatment with photons or protons and high-LET treatment with heavy ions. A detailed analysis of experimental data from the literature with respect to the dose dependence of the oxygen effect is performed, revealing controversial opinions whether the OER increases, decreases or stays constant with dose.</p> <p>Results</p> <p>The behavior of the OER with dose per fraction depends primarily on the ratios of the LQ parameters alpha and beta under hypoxic and aerobic conditions, which themselves depend on LET, pO2 and the cell or tissue type. According to our calculations, the OER variations with dose <it>in vivo </it>for low-LET treatments are moderate, with changes in the OER up to 11% for dose painting (1 or 3 Gy per fraction compared to 2 Gy) and up to 22% in hyper-/hypofractionation (0.5 or 20 Gy per fraction compared to 2 Gy) for oxygen tensions between 0.2 and 20 mmHg typically measured clinically in hypoxic tumors. For extremely hypoxic cells (0.01 mmHg), the dose dependence of the OER becomes more pronounced (up to 36%). For high LET, OER variations up to 4% for the whole range of oxygen tensions between 0.01 and 20 mmHg were found, which were much smaller than for low LET.</p> <p>Conclusions</p> <p>The formalism presented in this paper can be used for various tissue and radiation types to estimate OER variations with dose and help to decide in clinical practice whether some dose changes in dose painting or in fractionation can bring more benefit in terms of the OER in the treatment of a specific hypoxic tumor.</p

    Impact of Macrophage Inflammatory Protein-1α Deficiency on Atherosclerotic Lesion Formation, Hepatic Steatosis, and Adipose Tissue Expansion

    Get PDF
    Macrophage inflammatory protein-1α (CCL3) plays a well-known role in infectious and viral diseases; however, its contribution to atherosclerotic lesion formation and lipid metabolism has not been determined. Low density lipoprotein receptor deficient (LDLR−/−) mice were transplanted with bone marrow from CCL3−/− or C57BL/6 wild type donors. After 6 and 12 weeks on western diet (WD), recipients of CCL3−/− marrow demonstrated lower plasma cholesterol and triglyceride concentrations compared to recipients of C57BL/6 marrow. Atherosclerotic lesion area was significantly lower in female CCL3−/− recipients after 6 weeks and in male CCL3−/− recipients after 12 weeks of WD feeding (P<0.05). Surprisingly, male CCL3−/− recipients had a 50% decrease in adipose tissue mass after WD-feeding, and plasma insulin, and leptin levels were also significantly lower. These results were specific to CCL3, as LDLR−/− recipients of monocyte chemoattractant protein−/− (CCL2) marrow were not protected from the metabolic consequences of high fat feeding. Despite these improvements in LDLR−/− recipients of CCL3−/− marrow in the bone marrow transplantation (BMT) model, double knockout mice, globally deficient in both proteins, did not have decreased body weight, plasma lipids, or atherosclerosis compared with LDLR−/− controls. Finally, there were no differences in myeloid progenitors or leukocyte populations, indicating that changes in body weight and plasma lipids in CCL3−/− recipients was not due to differences in hematopoiesis. Taken together, these data implicate a role for CCL3 in lipid metabolism in hyperlipidemic mice following hematopoietic reconstitution
    corecore