91 research outputs found

    Methplotlib: Analysis of modified nucleotides from nanopore sequencing

    Get PDF
    Summary Modified nucleotides play a crucial role in gene expression regulation. Here, we describe methplotlib, a tool developed for the visualization of modified nucleotides detected from Oxford Nanopore Technologies sequencing platforms, together with additional scripts for statistical analysis of allele-specific modification within-subjects and differential modification frequency across subjects. Availability and implementation The methplotlib command-line tool is written in Python3, is compatible with Linux, Mac OS and the MS Windows 10 Subsystem for Linux and released under the MIT license. The source code can be found at https://github.com/wdecoster/methplotlib and can be installed from PyPI and bioconda. Our repository includes test data, and the tool is continuously tested at travis-ci.com. Supplementary information Supplementary data are available at Bioinformatics online.publishedVersio

    Loss of DPP6 in neurodegenerative dementia : a genetic player in the dysfunction of neuronal excitability

    Get PDF
    Emerging evidence suggested a converging mechanism in neurodegenerative brain diseases (NBD) involving early neuronal network dysfunctions and alterations in the homeostasis of neuronal firing as culprits of neurodegeneration. In this study, we used paired-end short-read and direct long-read whole genome sequencing to investigate an unresolved autosomal dominant dementia family significantly linked to 7q36. We identified and validated a chromosomal inversion of ca. 4Mb, segregating on the disease haplotype and disrupting the coding sequence of dipeptidyl-peptidase 6 gene (DPP6). DPP6 resequencing identified significantly more rare variants-nonsense, frame-shift, and missense-in early-onset Alzheimer's disease (EOAD, p value = 0.03, OR = 2.21 95% CI 1.05-4.82) and frontotemporal dementia (FTD, p = 0.006, OR = 2.59, 95% CI 1.28-5.49) patient cohorts. DPP6 is a type II transmembrane protein with a highly structured extracellular domain and is mainly expressed in brain, where it binds to the potassium channel K(v)4.2 enhancing its expression, regulating its gating properties and controlling the dendritic excitability of hippocampal neurons. Using in vitro modeling, we showed that the missense variants found in patients destabilize DPP6 and reduce its membrane expression (p < 0.001 and p < 0.0001) leading to a loss of protein. Reduced DPP6 and/or K(v)4.2 expression was also detected in brain tissue of missense variant carriers. Loss of DPP6 is known to cause neuronal hyperexcitability and behavioral alterations in Dpp6-KO mice. Taken together, the results of our genomic, genetic, expression and modeling analyses, provided direct evidence supporting the involvement of DPP6 loss in dementia. We propose that loss of function variants have a higher penetrance and disease impact, whereas the missense variants have a variable risk contribution to disease that can vary from high to low penetrance. Our findings of DPP6, as novel gene in dementia, strengthen the involvement of neuronal hyperexcitability and alteration in the homeostasis of neuronal firing as a disease mechanism to further investigate

    Left atrial volume and left ventricular mass indices in heart failure with preserved and reduced ejection fraction

    Get PDF
    Aims: Two key echocardiographic parameters that are currently used to diagnose heart failure (HF) with preserved ejection fraction (HFpEF) are left atrial volume index (LAVi) and left ventricular mass index (LVMi). We investigated whether patients' characteristics, biomarkers, and co-morbidities are associated with these parameters and whether the relationships differ between patients with HFpEF or HF with reduced ejection fraction (HFrEF). Methods: We consecutively enrolled 831 outpatients with typical signs and symptoms of HF and elevated N-terminal prohormone of brain natriuretic peptide (NT-proBNP) levels and categorized patients based upon left ventricular ejection fraction (LVEF): LVEF < 40% (HFrEF), LVEF between 40% and 50% (HF with mid-range ejection fraction), and LVEF ≥ 50% (HFpEF). The study includes consecutively enrolled HF patients from an HF outpatient clinic at a tertiary medical centre in the Netherlands. All patients underwent baseline characterization, laboratory measurements, and echocardiography. Results: Four hundred sixty-nine patients had HFrEF, 189 HF with mid-range ejection fraction, and 173 HFpEF. The patients with HFrEF were rather male [HFrEF: 323 (69%); HFpEF: 80 (46%); P < 0.001], and the age was comparable (HFrEF 67 ± 13; HFpEF 70 ± 14; P = 0.069). In HFpEF, more patients had hypertension [190 (40.5%); 114 (65.9%); P < 0.001], higher body mass indices (27 ± 8; 30 ± 7; P < 0.001), and atrial fibrillation [194 (41.4); 86 (49.7); P = 0.029]. The correlation analyses showed that in HFrEF patients, LAVi was significantly associated with age (β 0.293; P < 0.001), male gender (β 0.104; P = 0.042), body mass index (β −0160; P = 0.002), diastolic blood pressure (β −0.136; P < 0.001), New York Heart Association (β 0.174; P = 0.001), atrial fibrillation (β 0.381; P < 0.001), galectin 3 (β 0.230; P < 0.001), NT-proBNP (β 0.183; P < 0.001), estimated glomerular filtration rate (β −0.205; P < 0.001), LVEF (β −0.173; P = 0.001), and LVMi (β 0.337; P < 0.001). In HFpEF patients, only age (β 0.326; P < 0.001), atrial fibrillation (β 0.386; P < 0.001), NT-proBNP (β 0.176; P = 0.036), and LVMi (β 0.213; P = 0.013) were associated with LAVi. Conclusions: Although LVMi and LAVi are hallmark parameters to diagnose HFpEF, they only correlate with a few characteristics of HF and mainly with atrial fibrillation. In contrast, in HFrEF patients, LAVi relates strongly to several other HF parameters. These findings underscore the complexity in visualizing the pathophysiology of HFpEF and question the relation between cardiac structural remodeling and the impact of co-morbidities

    Long-read sequencing to unravel complex structural variants of CEP78 leading to cone-rod dystrophy and hearing loss

    Get PDF
    Inactivating variants as well as a missense variant in the centrosomal CEP78 gene have been identified in autosomal recessive cone-rod dystrophy with hearing loss (CRDHL), a rare syndromic inherited retinal disease distinct from Usher syndrome. Apart from this, a complex structural variant (SV) implicating CEP78 has been reported in CRDHL. Here we aimed to expand the genetic architecture of typical CRDHL by the identification of complex SVs of the CEP78 region and characterization of their underlying mechanisms. Approaches used for the identification of the SVs are shallow whole-genome sequencing (sWGS) combined with quantitative polymerase chain reaction (PCR) and long-range PCR, or ExomeDepth analysis on whole-exome sequencing (WES) data. Targeted or whole-genome nanopore long-read sequencing (LRS) was used to delineate breakpoint junctions at the nucleotide level. For all SVs cases, the effect of the SVs on CEP78 expression was assessed using quantitative PCR on patient-derived RNA. Apart from two novel canonical CEP78 splice variants and a frameshifting single-nucleotide variant (SNV), two SVs affecting CEP78 were identified in three unrelated individuals with CRDHL: a heterozygous total gene deletion of 235 kb and a partial gene deletion of 15 kb in a heterozygous and homozygous state, respectively. Assessment of the molecular consequences of the SVs on patient’s materials displayed a loss-of-function effect. Delineation and characterization of the 15-kb deletion using targeted LRS revealed the previously described complex CEP78 SV, suggestive of a recurrent genomic rearrangement. A founder haplotype was demonstrated for the latter SV in cases of Belgian and British origin, respectively. The novel 235-kb deletion was delineated using whole-genome LRS. Breakpoint analysis showed microhomology and pointed to a replication-based underlying mechanism. Moreover, data mining of bulk and single-cell human and mouse transcriptional datasets, together with CEP78 immunostaining on human retina, linked the CEP78 expression domain with its phenotypic manifestations. Overall, this study supports that the CEP78 locus is prone to distinct SVs and that SV analysis should be considered in a genetic workup of CRDHL. Finally, it demonstrated the power of sWGS and both targeted and whole-genome LRS in identifying and characterizing complex SVs in patients with ocular diseases

    Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease

    Get PDF
    Altres ajuts: The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The research was funded in part by the European Commission Seventh Framework Programme for research, technological development, and demonstration under grant agreement 305299 (AgedBrainSYSBIO), the Belgian Science Policy Office Interuniversity Attraction Poles program, the Alzheimer Research Foundation (SAO-FRA), the Flemish government-initiated Flanders Impulse Program on Networks for Dementia Research (VIND), the Flemish government-initiated Methusalem Excellence Program, the Research Foundation Flanders (FWO), the VIB Technology Fund, the University of Antwerp Research Fund, Belgium; European Regional Development Fund, the Italian Ministry of Health (Ricerca Corrente and RF-2010-2319722), and the Fondazione Cassa di Risparmio di Pistoia e Pescia grant (2014.0365).Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer's disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)-control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5-41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD

    Methylome analysis of FTLD patients with TDP-43 pathology identifies epigenetic signatures specific to pathological subtypes

    Get PDF
    Background:In the last decade, the importance of DNA methylation in the functioning of the central nervous system has been highlighted through associations between methylation changes and differential expression of key genes involved in aging and neurodegenerative diseases. In frontotemporal lobar degeneration (FTLD), aberrant methylation has been reported in causal disease genes including GRN and C9orf72; however, the genome-wide contribution of epigenetic changes to the development of FTLD remains largely unexplored. Methods: We performed reduced representation bisulfite sequencing of matched pairs of post-mortem tissue from frontal cortex (FCX) and cerebellum (CER) from pathologically confirmed FTLD patients with TDP-43 pathology (FTLD-TDP) further divided into five subtypes and including both sporadic and genetic forms (N = 25 pairs per group), and neuropathologically normal controls (N = 42 pairs). Case-control differential methylation analyses were performed, both at the individual CpG level, and in regions of grouped CpGs (differentially methylated regions; DMRs), either including all genomic locations or only gene promoters. Gene Ontology (GO) analyses were then performed using all differentially methylated genes in each group of sporadic patients. Finally, additional datasets were queried to prioritize candidate genes for follow-up. Results: Using the largest FTLD-TDP DNA methylation dataset generated to date, we identified thousands of differentially methylated CpGs (FCX = 6,520; CER = 7,134) and several hundred DMRs in FTLD-TDP brains (FCX = 134; CER = 219). Of these, less than 10% are shared between pathological subgroups. Combining additional datasets, we identified, validated and replicated hypomethylation of CAMTA1 in TDP-A potentially also impacting additional genes in the locus. GO analysis further implicated DNA methylation in myelination and developmental processes, as well as important disease-relevant mechanisms with subtype specificity such as protein phosphorylation and DNA damage repair in TDP-A, cholesterol biosynthesis in TDP-B, and protein localization in TDP-C.Conclusions: We identify methylation changes in all FTLD-TDP patient groups and show that most changes are unique to a specific pathological FTLD-TDP subtype, suggesting that these subtypes not only have distinct transcriptomic and genetic signatures, but are also epigenetically distinct. Our study constitutes an invaluable resource to the community and highlights the need for further studies to profile additional epigenetic layers within each FTLD-TDP pathological subtype.</p

    Brain transcriptomics highlight abundant gene expression and splicing alterations in non-neuronal cells in aFTLD-U

    Get PDF
    Atypical frontotemporal lobar degeneration with ubiquitin-positive inclusions (aFTLD-U) is a rare cause of frontotemporal lobar degeneration (FTLD), characterized postmortem by neuronal inclusions of the FET family of proteins (FTLD-FET). The recent discovery of TAF15 amyloid filaments in aFTLD-U brains represents a significant step toward improved diagnostic and therapeutic strategies. However, our understanding of the etiology of this FTLD subtype remains limited, which severely hampers translational research efforts. To explore the transcriptomic changes in aFTLD-U, we performed bulk RNA sequencing on the frontal cortex tissue of 21 aFTLD-U patients and 20 control individuals. Cell-type deconvolution revealed loss of excitatory neurons and a higher proportion of astrocytes in aFTLD-U relative to controls. Differential gene expression and co-expression network analysis, adjusted for the shift in cell-type proportions, showed dysregulation of mitochondrial pathways, transcriptional regulators, and upregulation of the Sonic hedgehog (Shh) pathway, including the GLI1 transcription factor, in aFTLD-U. Overall, oligodendrocyte and astrocyte-enriched genes were significantly over-represented among the differentially expressed genes. Differential splicing analysis confirmed the dysregulation of non-neuronal cell types with significant splicing alterations, particularly in oligodendrocyte-enriched genes, including myelin basic protein (MBP), a crucial component of myelin. Immunohistochemistry in frontal cortex brain tissue also showed reduced myelin levels in aFTLD-U patients compared to controls. Together, these findings highlight a central role for glial cells, particularly astrocytes and oligodendrocytes, in the pathogenesis of aFTLD-U, with disruptions in mitochondrial activity, RNA metabolism, Shh signaling, and myelination as possible disease mechanisms. This study offers the first transcriptomic insight into aFTLD-U and presents new avenues for research into FTLD-FET.</p

    High-Coverage Nanopore Sequencing of Samples From the 1000 Genomes Project To Build a Comprehensive Catalog of Human Genetic Variation

    Get PDF
    Fewer than half of individuals with a suspected Mendelian or monogenic condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control data sets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project (1KGP) Oxford Nanopore Technologies Sequencing Consortium aims to generate LRS data from at least 800 of the 1KGP samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37× and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs
    corecore