18 research outputs found

    An International Prospective Cohort Study To Validate 2 Prediction Rules for Infections Caused by Third-generation Cephalosporin-resistant Enterobacterales

    Get PDF
    Background The possibility of bloodstream infections caused by third-generation cephalosporin-resistant Enterobacterales (3GC-R-BSI) leads to a trade-off between empiric inappropriate treatment (IAT) and unnecessary carbapenem use (UCU). Accurately predicting 3GC-R-BSI could reduce IAT and UCU. We externally validate 2 previously derived prediction rules for community-onset (CO) and hospital-onset (HO) suspected bloodstream infections. Methods In 33 hospitals in 13 countries we prospectively enrolled 200 patients per hospital in whom blood cultures were obtained and intravenous antibiotics with coverage for Enterobacterales were empirically started. Cases were defined as 3GC-R-BSI or 3GC-R gram-negative infection (3GC-R-GNI) (analysis 2); all other outcomes served as a comparator. Model discrimination and calibration were assessed. Impact on carbapenem use was assessed at several cutoff points. Results 4650 CO infection episodes were included and the prevalence of 3GC-R-BSI was 2.1% (n = 97). IAT occurred in 69 of 97 (71.1%) 3GC-R-BSI and UCU in 398 of 4553 non–3GC-R-BSI patients (8.7%). Model calibration was good, and the AUC was .79 (95% CI, .75–.83) for 3GC-R-BSI. The prediction rule potentially reduced IAT to 62% (60/97) while keeping UCU comparable at 8.4% or could reduce UCU to 6.3% (287/4553) while keeping IAT equal. IAT and UCU in all 3GC-R-GNIs (analysis 2) improved at similar percentages. 1683 HO infection episodes were included and the prevalence of 3GC-R-BSI was 4.9% (n = 83). Here model calibration was insufficient. Conclusions A prediction rule for CO 3GC-R infection was validated in an international cohort and could improve empirical antibiotic use. Validation of the HO rule yielded suboptimal performance

    An International Prospective Cohort Study To Validate 2 Prediction Rules for Infections Caused by Third-generation Cephalosporin-resistant Enterobacterales

    Get PDF
    [Background] The possibility of bloodstream infections caused by third-generation cephalosporin-resistant Enterobacterales (3GC-R-BSI) leads to a trade-off between empiric inappropriate treatment (IAT) and unnecessary carbapenem use (UCU). Accurately predicting 3GC-R-BSI could reduce IAT and UCU. We externally validate 2 previously derived prediction rules for community-onset (CO) and hospital-onset (HO) suspected bloodstream infections.[Methods] In 33 hospitals in 13 countries we prospectively enrolled 200 patients per hospital in whom blood cultures were obtained and intravenous antibiotics with coverage for Enterobacterales were empirically started. Cases were defined as 3GC-R-BSI or 3GC-R gram-negative infection (3GC-R-GNI) (analysis 2); all other outcomes served as a comparator. Model discrimination and calibration were assessed. Impact on carbapenem use was assessed at several cutoff points.[Results] 4650 CO infection episodes were included and the prevalence of 3GC-R-BSI was 2.1% (n = 97). IAT occurred in 69 of 97 (71.1%) 3GC-R-BSI and UCU in 398 of 4553 non–3GC-R-BSI patients (8.7%). Model calibration was good, and the AUC was .79 (95% CI, .75–.83) for 3GC-R-BSI. The prediction rule potentially reduced IAT to 62% (60/97) while keeping UCU comparable at 8.4% or could reduce UCU to 6.3% (287/4553) while keeping IAT equal. IAT and UCU in all 3GC-R-GNIs (analysis 2) improved at similar percentages. 1683 HO infection episodes were included and the prevalence of 3GC-R-BSI was 4.9% (n = 83). Here model calibration was insufficient.[Conclusions] A prediction rule for CO 3GC-R infection was validated in an international cohort and could improve empirical antibiotic use. Validation of the HO rule yielded suboptimal performance.J. R.-B. receives funds for research from Plan Nacional de I+D+i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0001), co-financed by the European Development Regional Fund “A Way to Achieve Europe,” Operative Program Intelligent Growth 2014-2020.Peer reviewe

    Фразеологические единицы с компонентом deve в крымскотатарском и турецком языках

    Get PDF
    Цель и задачи статьи - выявить и охарактеризовать фразеологические единицы крымскотатарского и турецкого языков с компонентом deve/верблюд в структуре национальной когнитивной картины мира

    Attributable mortality of antibiotic resistance in Gram-negative infections in the Netherlands: a parallel matched cohort study

    Get PDF
    Abstract Objectives Antibiotic resistance in Gram-negative bacteria has been associated with increased mortality. This was demonstrated mostly for third-generation cephalosporin-resistant (3GC-R) Enterobacterales bacteraemia in international studies. Yet, the burden of resistance specifically in the Netherlands and created by all types of Gram-negative infection has not been quantified. We therefore investigated the attributable mortality of antibiotic resistance in Gram-negative infections in the Netherlands. Methods In eight hospitals, a sample of Gram-negative infections was identified between 2013 and 2016, and separated into resistant and susceptible infection cohorts. Both cohorts were matched 1:1 to non-infected control patients on hospital, length of stay at infection onset, and age. In this parallel matched cohort set-up, 30-day mortality was compared between infected and non-infected patients. The impact of resistance was then assessed by dividing the two separate risk ratios (RRs) for mortality attributable to Gram-negative infection. Results We identified 1,954 Gram-negative infections, of which 1,190 (61%) involved Escherichia coli, 210 (11%) Pseudomonas aeruginosa, and 758 (39%) bacteraemia. Resistant Gram-negatives caused 243 infections (12%; 189 (78%) 3GC-R Enterobacterales, 9 (4%) multidrug-resistant P. aeruginosa, no carbapenemase-producing Enterobacterales). Subsequently, we matched 1,941 non-infected controls. After adjustment, point estimates for RRs comparing mortality between infections and controls were similarly higher than 1 in case of resistant infections and susceptible infections (1.42 (95% confidence interval 0.66-3.09) and 1.32 (1.06-1.65), respectively). By dividing these, the RR reflecting attributable mortality of resistance was calculated as 1.08 (0.48-2.41). Conclusions In the Netherlands, antibiotic resistance did not increase 30-day mortality in Gram-negative infections

    Improved treatment of multidrug-resistant bacterial infections: utility of clinical studies

    No full text
    In a time of increasing antibacterial resistance and limited availability of new antibiotics, clinical studies are much needed to assess treatment options against multidrug-resistant organisms (MDROs). In this review, we describe the clinical challenge caused by MDROs and present recent evidence on how clinical studies may generate quality data to improve antibiotic treatment of MDRO infections. To this aim, we critically assess the current status, gaps and challenges associated with observational and interventional studies performed to assess MDRO treatment options. We address why observational studies are useful, which treatment options for MDRO have been explored by observational studies and how to improve quality and usefulness of observational studies. Furthermore, the utility of clinical pharmacokinetic/pharmacodynamic studies for improving MDRO treatment is described. Finally, we discuss interventional study designs, end points and margins, as well as ethical, logistic and statistical challenges, and current regulatory changes proposed to foster the development of new antibiotics

    An International Prospective Cohort Study To Validate 2 Prediction Rules for Infections Caused by Third-generation Cephalosporin-resistant Enterobacterales

    No full text
    The possibility of bloodstream infections caused by 3rd-generation cephalosporin-resistant Enterobacterales (3GC-R-BSI) leads to a trade-off between empiric inappropriate treatment (IAT) and unnecessary carbapenem use (UCU). Accurately predicting 3GC-R-BSI could reduce IAT and UCU. We externally validate two previously derived prediction rules for community-onset (CO) and hospital-onset (HO) suspected bloodstream infections
    corecore