1,164 research outputs found

    Facilitating mission in British Methodist churches: lessons from historical and contemporary models

    Get PDF
    The recent rapid decline and current ageing membership of British Methodism has given rise to questions as to whether it has a viable future. If recent trends are to be arrested and reversed local Methodist churches need to become more committed to mission. Modern secularised society presents both difficulties and opportunities for mission and these need to be grappled with if effective mission paradigms are to be developed. In doing this, the 'Epworth Quadrilateral' of Scripture, Tradition, Experience and Reason provides a useful framework. The history of Methodism provides useful lessons and models for mission which can be built upon for churches today. A detailed analysis of the churches and communities they serve in one Methodist circuit demonstrates a variety of attitudes and approaches towards mission and points towards the identification of three ideal types - the remnant church, the institutional church and the mission-minded church. If mission is to be taken seriously, churches need to exhibit mission-minded attitudes and characteristics rather than remnant or institutional ones. Scripture, through the gospels and the early church, provides useful indicators for key characteristics of mission-minded Christian communities. In recent times cell churches, the 'Willow Creek' approach of seeker style services, the AIpha/Emmaus models of Christian catechumen ate and serious commitment to social care and action have all been effective in facilitating mission in certain circumstances. A critical analysis and synthesis of all these models and approaches enable some key characteristics of ideal type mission-minded churches to be put forward. The adoption of such a mission-minded approach will have implications for both the organisation and nature of ministry in the Methodist Church. Each local church will have to discern the best approach to mission in its local situation, but to be effective it will exhibit to some extent all the key characteristics identified

    Mass accommodation coefficient measurements for HNO3, HCl and N2O5 on water, ice and aqueous sulfuric acid droplet surfaces

    Get PDF
    Preliminary results are reported of the direct measurement of accommodation coefficients for HNO3, N2O5 and HCl on water drops, aqueous sulfuric acid drops and ice particles. The heterogeneous chemistry of these species together with ClONO2 has been implicated in the ozone depletion observed in the Antarctic stratosphere during the spring in the last eight years. The most plausible chemical mechanism involves the removal of nitrogen oxide species via condensation on ice particles in polar stratospheric clouds resulting in a increase in the active chlorine species responsible for the ozone depletion. The observation of low NO2 and high ClO densities in the Antarctic stratosphere last summer appear to be consistent with such a mechanism

    Constrained Inverse Optimal Control with Application to a Human Manipulation Task

    Full text link
    This paper presents an inverse optimal control methodology and its application to training a predictive model of human motor control from a manipulation task. It introduces a convex formulation for learning both objective function and constraints of an infinite-horizon constrained optimal control problem with nonlinear system dynamics. The inverse approach utilizes Bellman's principle of optimality to formulate the infinite-horizon optimal control problem as a shortest path problem and Lagrange multipliers to identify constraints. We highlight the key benefit of using the shortest path formulation, i.e., the possibility of training the predictive model with short and selected trajectory segments. The method is applied to training a predictive model of movements of a human subject from a manipulation task. The study indicates that individual human movements can be predicted with low error using an infinite-horizon optimal control problem with constraints on shoulder movement

    Changes in organic aerosol composition with aging inferred from aerosol mass spectra

    Get PDF
    Organic aerosols (OA) can be separated with factor analysis of aerosol mass spectrometer (AMS) data into hydrocarbon-like OA (HOA) and oxygenated OA (OOA). We develop a new method to parameterize H:C of OOA in terms of f_(43)(ratio of m/z 43, mostly C_2H_3O^+, to total signal in the component mass spectrum). Such parameterization allows for the transformation of large database of ambient OOA components from the f_(44) (mostly CO^+_2, likely from acid groups) vs. f_(43) space ("triangle plot") (Ng et al., 2010) into the Van Krevelen diagram (H:C vs. O:C) (Van Krevelen, 1950). Heald et al. (2010) examined the evolution of total OA in the Van Krevelen diagram. In this work total OA is deconvolved into components that correspond to primary (HOA and others) and secondary (OOA) organic aerosols. By deconvolving total OA into different components, we remove physical mixing effects between secondary and primary aerosols which allows for examination of the evolution of OOA components alone in the Van Krevelen space. This provides a unique means of following ambient secondary OA evolution that is analogous to and can be compared with trends observed in chamber studies of secondary organic aerosol formation. The triangle plot in Ng et al. (2010) indicates that f_(44) of OOA components increases with photochemical age, suggesting the importance of acid formation in OOA evolution. Once they are transformed with the new parameterization, the triangle plot of the OOA components from all sites occupy an area in Van Krevelen space which follows a ΔH:C/ΔO:C slope of ~ −0.5. This slope suggests that ambient OOA aging results in net changes in chemical composition that are equivalent to the addition of both acid and alcohol/peroxide functional groups without fragmentation (i.e. C-C bond breakage), and/or the addition of acid groups with fragmentation. These results provide a framework for linking the bulk aerosol chemical composition evolution to molecular-level studies

    Elemental composition and oxidation of chamber organic aerosol

    Get PDF
    Recently, graphical representations of aerosol mass spectrometer (AMS) spectra and elemental composition have been developed to explain the oxidative and aging processes of secondary organic aerosol (SOA). It has been shown previously that oxygenated organic aerosol (OOA) components from ambient and laboratory data fall within a triangular region in the f_(44) vs. f_(43) space, where f_(44) and f_(43) are the ratios of the organic signal at m/z 44 and 43 to the total organic signal in AMS spectra, respectively; we refer to this graphical representation as the "triangle plot." Alternatively, the Van Krevelen diagram has been used to describe the evolution of functional groups in SOA. In this study we investigate the variability of SOA formed in chamber experiments from twelve different precursors in both "triangle plot" and Van Krevelen domains. Spectral and elemental data from the high-resolution Aerodyne aerosol mass spectrometer are compared to offline species identification analysis and FTIR filter analysis to better understand the changes in functional and elemental composition inherent in SOA formation and aging. We find that SOA formed under high- and low-NO_x conditions occupy similar areas in the "triangle plot" and Van Krevelen diagram and that SOA generated from already oxidized precursors allows for the exploration of areas higher on the "triangle plot" not easily accessible with non-oxidized precursors. As SOA ages, it migrates toward the top of the triangle along a path largely dependent on the precursor identity, which suggests increasing organic acid content and decreasing mass spectral variability. The most oxidized SOA come from the photooxidation of methoxyphenol precursors which yielded SOA O/C ratios near unity. α-pinene ozonolysis and naphthalene photooxidation SOA systems have had the highest degree of mass closure in previous chemical characterization studies and also show the best agreement between AMS elemental composition measurements and elemental composition of identified species within the uncertainty of the AMS elemental analysis. In general, compared to their respective unsaturated SOA precursors, the elemental composition of chamber SOA follows a slope shallower than −1 on the Van Krevelen diagram, which is indicative of oxidation of the precursor without substantial losss of hydrogen, likely due to the unsaturated nature of the precursors. From the spectra of SOA studied here, we are able to reproduce the triangular region originally constructed with ambient OOA compents with chamber aerosol showing that SOA becomes more chemically similar as it ages. Ambient data in the middle of the triangle represent the ensemble average of many different SOA precursors, ages, and oxidative processes

    Slip intermittency and dwell fatigue in titanium alloys: a discrete dislocation plasticity analysis

    Get PDF
    Slip intermittency and stress oscillations in titanium alloy Ti-7Al-O that were observed using in-situ far-field high energy X-ray diffraction microscopy (ff-HEDM) are investigated using a discrete dislocation plasticity (DDP) model. The mechanistic foundation of slip intermittency and stress oscillations are shown to be dislocation escape from obstacles during stress holds, governed by a thermal activation constitutive law. The stress drop events due to -basal slip are larger in magnitude than those along -prism, which is a consequence of their differing rate sensitivities, previously found from micropillar testing. It is suggested that interstitial oxygen suppresses stress oscillations by inhibiting the thermal activation process. Understanding of these mechanisms is of benefit to the design and safety assessment of jet engine titanium alloys subjected to dwell fatigue

    Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols

    No full text
    International audienceA recently developed algorithm (Zhang et al., 2005) has been applied to deconvolve the mass spectra of organic aerosols acquired with the Aerosol Mass Spectrometer (AMS) in Pittsburgh during September 2002. The results are used here to characterize the mass concentrations, size distributions, and mass spectra of hydrocarbon-like and oxygenated organic aerosol (HOA and OOA, respectively). HOA accounts for 34% of the measured organic aerosol mass and OOA accounts for 66%. The mass concentrations of HOA demonstrate a prominent diurnal profile that peaks in the morning during the rush hour and decreases with the rise of the boundary layer. The diurnal profile of OOA is relatively flat and resembles those of SO42? and NH4+. The size distribution of HOA shows a distinct ultrafine mode that is commonly associated with fresh emissions while OOA is generally concentrated in the accumulation mode and appears to be mostly internally mixed with the inorganic ions, such as SO42? and NH4+. These observations suggest that HOA is likely primary aerosol from local, combustion-related emissions and that OOA is secondary organic aerosol (SOA) influenced by regional contributions. There is strong evidence of the direct correspondence of OOA to SOA during an intense new particle formation and growth event, when condensational growth of OOA was observed. The fact that the OOA mass spectrum from this event is very similar to that from the entire study suggests that the majority of OOA in Pittsburgh is likely SOA. O3 appears to be a poor indicator for OOA concentration while SO42? is a relatively good surrogate for this dataset. Since the diurnal averages of HOA track those of CO during day time, oxidation/aging of HOA appears to be very small on the time scale of several hours. Based on extracted mass spectra and the likely elemental compositions of major m/z's, the organic mass to organic carbon ratios (OM:OC) of HOA and OOA are estimated at 1.2 and 2.2 ?g/?gC, respectively, leading to an average OM:OC ratio of 1.8 for submicron OA in Pittsburgh during September. The C:O ratio of OOA is estimated at 1:0.8. The carbon contents in HOA and OOA estimated accordingly correlate well to primary and secondary organic carbon, respectively, estimated by the OC/EC tracer technique (assuming POC-to-EC ratio=1). In addition, the total carbon concentrations estimated from the AMS data agree well with those measured by the Sunset Laboratory Carbon analyzer (r2=0.87; slope=1.01±0.11). Our results represent the first direct estimate of the OM:OC ratio from highly time-resolved chemical composition measurements

    Asymptomatic carotid stenosis is associated with circadian and other variability in embolus detection

    Get PDF
    Background and Purpose: Variability in transcranial Doppler (TCD) detection of embolic signals (ES) is important for risk stratification. We tested the effect of time of day on ES associated with 60–99% asymptomatic carotid stenosis. Materials and Methods: Subjects were from the Asymptomatic Carotid Stenosis Embolus Detection (ASED) Study such that half were previously ES-positive and half ES-negative with 6-monthly 60-min TCD monitoring. All underwent bilateral TCD monitoring for two 12-h sessions separated by 24 h. ES detection rates were calculated using 6 and 4-h intervals from midnight and effective TCD monitoring time. Results: Ten subjects (8 male, mean age 79.5 years) were monitored. Over 24 h, 5/10 study arteries with 60–99% asymptomatic carotid stenosis were ES-positive (range 1–28 ES/artery, 56 total ES from 177.9 total effective monitoring hours). The remaining five study arteries and all eight successfully monitored contralateral arteries were ES-negative. Using 6-h intervals the mean ES detection rate peaked at 0600-midday (0.64/h) and was lowest 1800-midnight (0.09/h) with an incidence rate ratio of 7.26 (95% CI 2.52–28.64, P ≤ 0.001). Using 4-h intervals the mean ES detection rate peaked at 0800-midday (0.64/h) and was lowest midnight-0400 (0.12/h) with an incidence rate ratio of 5.51 (95% CI 1.78–22.67, P = 0.001). Conclusions: Embolism associated with asymptomatic carotid stenosis shows circadian variation with highest rates 4–6 h before midday. This corresponds with peak circadian incidence of stroke and other vascular complications. These and ASED Study results show that monitoring frequency, duration, and time of day are important in ES detection. © Copyright © 2019 Abbott, Merican, Pearce, Juric, Worsnop, Foster and Chambers
    corecore