86 research outputs found

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    Characterization of voltage-gated ionic currents in a peripheral sensory neuron in larval Drosophila.

    Get PDF
    BACKGROUND: The development, morphology and genetics of sensory neurons have been extensively studied in Drosophila. Sensory neurons in the body wall of larval Drosophila in particular have been the subject of numerous anatomical studies, however, little is known about the intrinsic electrical properties of larval sensory cells. FINDINGS: We performed whole cell patch recordings from an identified peripheral sensory cell, the dorsal bipolar sensory neuron (dbd) and measured voltage-gated ionic currents in 1st instar larvae. Voltage clamp analysis revealed that dbds have a TEA sensitive, non-inactivating IK type potassium current as well as a 4-AP sensitive, inactivating IA type potassium current. dbds also show a voltage-gated calcium current (ICa) and a voltage-gated sodium current (INa). CONCLUSIONS: This work provides a first characterization of voltage-activated ionic currents in an identified body-wall sensory neuron in larval Drosophila. Overall, we establish baseline physiology data for future studies aimed at understanding the ionic and genetic basis of sensory neuron function in fruit flies and other model organisms.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    The natural history and management of hamstring injuries

    Get PDF
    Hamstring injuries in sport can be debilitating. The anatomical complexity of this muscle makes uniform assessment of injury epidemiology difficult and insures that post-injury management strategies must be individually focused. This article reviews the anatomy of the hamstring, its role in athletic movement, common mechanisms of injury, and management guidelines with the goal of return into sporting activity in mind

    Demand-side approaches for limiting global warming to 1.5 °C

    Get PDF
    The Paris Climate Agreement defined an ambition of limiting global warming to 1.5 °C above preindustrial levels. This has triggered research on stringent emission reduction targets and corresponding mitigation pathways across energy economy and societal systems. Driven by methodological considerations, supply side and carbon dioxide removal options feature prominently in the emerging pathway literature, while much less attention has been given to the role of demand-side approaches. This special issue addresses this gap, and aims to broaden and strengthen the knowledge base in this key research and policy area. This editorial paper synthesizes the special issue’s contributions horizontally through three shared themes we identify: policy interventions, demand-side measures, and methodological approaches. The review of articles is supplemented by insights from other relevant literature. Overall, our paper underlines that stringent demand-side policy portfolios are required to drive the pace and direction of deep decarbonization pathways and keep the 1.5 °C target within reach. It confirms that insufficient attention has been paid to demand-side measures, which are found to be inextricably linked to supply-side decarbonization and able to complement supply-side measures. The paper also shows that there is an abundance of demand-side measures to limit warming to 1.5 °C, but it warns that not all of these options are “seen” or captured by current quantitative tools or progress indicators, and some remain insufficiently represented in the current policy discourse. Based on the set of papers presented in the special issue, we conclude that demand-side mitigation in line with the 1.5 °C goal is possible; however, it remains enormously challenging and dependent on both innovative technologies and policies, and behavioral change. Limiting warming to 1.5 °C requires, more than ever, a plurality of methods and integrated behavioral and technology approaches to better support policymaking and resulting policy interventions

    Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives

    Get PDF
    Deoxynivalenol (DON) is the major mycotoxin produced by Fusarium fungi in grains. Food and feed contaminated with DON pose a health risk to humans and livestock. The risk can be reduced by enzymatic detoxification. Complete mineralization of DON by microbial cultures has rarely been observed and the activities turned out to be unstable. The detoxification of DON by reactions targeting its epoxide group or hydroxyl on carbon 3 is more feasible. Microbial strains that de-epoxidize DON under anaerobic conditions have been isolated from animal digestive system. Feed additives claimed to de-epoxidize trichothecenes enzymatically are on the market but their efficacy has been disputed. A new detoxification pathway leading to 3-oxo-DON and 3-epi-DON was discovered in taxonomically unrelated soil bacteria from three continents; the enzymes involved remain to be identified. Arabidopsis, tobacco, wheat, barley, and rice were engineered to acetylate DON on carbon 3. In wheat expressing DON acetylation activity, the increase in resistance against Fusarium head blight was only moderate. The Tri101 gene from Fusarium sporotrichioides was used; Fusarium graminearum enzyme which possesses higher activity towards DON would presumably be a better choice. Glycosylation of trichothecenes occurs in plants, contributing to the resistance of wheat to F. graminearum infection. Marker-assisted selection based on the trichothecene-3-O-glucosyltransferase gene can be used in breeding for resistance. Fungal acetyltransferases and plant glucosyltransferases targeting carbon 3 of trichothecenes remain promising candidates for engineering resistance against Fusarium head blight. Bacterial enzymes catalyzing oxidation, epimerization, and less likely de-epoxidation of DON may extend this list in future

    Estudo comparativo preliminar entre os alongamentos proprioceptivo e estático passivo em pacientes com seqüelas de hanseníase

    Get PDF
    A proposta deste estudo foi comparar a aplicação de alongamento estático passivo e alongamento proprioceptivo no tratamento de seqüelas de hanseníase. Doze pacientes com essas seqüelas participaram da pesquisa, separados aleatoriamente em dois grupos: o grupo FNP, tratado com facilitação neuromuscular proprioceptiva, e o grupo AEP, com alongamento estático passivo. Ambos realizaram dez sessões de alongamentos, sendo submetidos à avaliação inicial e final nas quais foram aplicados o questionário SF-36, mensuradas a amplitude de movimento (ADM) do punho e tornozelo, testados os reflexos e a sensibilidade. No grupo FNP foi observada melhora na ADM do tornozelo e em três domínios do SF-36; no grupo AEP, em cinco domínios do SF-36. Quando comparados os grupos, o FNP obteve melhora significativa na extensão do punho, dorsiflexão e plantiflexão em relação ao AEP. A facilitação neuromuscular proprioceptiva parece ser um método mais eficaz para ganhar alongamento muscular e ADM de tornozelo e punho em pacientes com seqüelas de hanseníase. Não foi observada relação entre acréscimo na ADM e melhora na qualidade de vida relacionada à saúde nos pacientes dos dois grupos.The purpose of this study was to compare the effects of two kinds of stretching - passive, static stretching, and proprioceptive neuromuscular facilitation (PNF) - in patients with leprosy sequel. Twelve patients were randomly assigned into two groups: the PNF group and the SS group, that was submitted to static stretching. Both groups attended ten stretching sessions, being submitted to initial and final evaluations in which were assessed: health-related quality of life, by means of he SF-36 questionnaire; ankle and wrist range of motion (ROM); and sensitivity and reflex testing. Improvements in ankle movement and in three SF-36 domains were observed in PNF group; and in five SF-36 domains in SS group. PNF group showed better improvement in wrist extension and ankle movement than SS group. PNF seems to be a more effective method to increase flexibility and ankle and wrist range of motion in patients with leprosy sequelae. No relation was found between ROM improvement and perception of better health-related quality of life in any of the groups

    Author Correction: c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis

    Get PDF
    Correction to: Nature Metabolism https://doi.org/10.1038/s42255-020-00306-2, published online 9 November 2020. In the version of this article initially published, in the ×40 diseased human kidney images in Supplementary Fig. 1, the FSGS image duplicated the DN image. The error has been corrected in the HTML version of the article

    c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis

    Get PDF
    Fibrosis is a common pathological feature of chronic disease. Deletion of the NF-κB subunit c-Rel limits fibrosis in multiple organs, although the mechanistic nature of this protection is unresolved. Using cell-specific gene-targeting manipulations in mice undergoing liver damage, we elucidate a critical role for c-Rel in controlling metabolic changes required for inflammatory and fibrogenic activities of hepatocytes and macrophages and identify Pfkfb3 as the key downstream metabolic mediator of this response. Independent deletions of Rel in hepatocytes or macrophages suppressed liver fibrosis induced by carbon tetrachloride, while combined deletion had an additive anti-fibrogenic effect. In transforming growth factor-β1-induced hepatocytes, c-Rel regulates expression of a pro-fibrogenic secretome comprising inflammatory molecules and connective tissue growth factor, the latter promoting collagen secretion from HMs. Macrophages lacking c-Rel fail to polarize to M1 or M2 states, explaining reduced fibrosis in RelΔLysM mice. Pharmacological inhibition of c-Rel attenuated multi-organ fibrosis in both murine and human fibrosis. In conclusion, activation of c-Rel/Pfkfb3 in damaged tissue instigates a paracrine signalling network among epithelial, myeloid and mesenchymal cells to stimulate fibrogenesis. Targeting the c-Rel–Pfkfb3 axis has potential for therapeutic applications in fibrotic disease

    Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression

    Full text link
    corecore