251 research outputs found

    Heave-pitch-roll analysis and testing of air cushion landing systems

    Get PDF
    The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent

    Dynamic heave-pitch analysis of air cushion landing systems

    Get PDF
    A program to develop analytical tools for evaluating the dynamic performance of Air Cushion Landing Systems (ACLS) is described. The heave (vertical) motion of the ACLS was analyzed, and the analysis was extended to cover coupled heave-pitch motions. The mathematical models developed are based on a fundamental analysis of the body dynamics and fluid mechanics of the aircraft-cushion-runway interaction. The air source characteristics, flow losses in the feeding ducts, trunk and cushion, the effects of fluid compressibility, and dynamic trunk deflections, including ground contact are considered. A computer program, based on the heave-pitch analysis, was developed to simulate the dynamic behavior of an ACLS during landing impact and taxi over an irregular runway. The program outputs include ACLS motions, loadings, pressures, and flows as a function of time. To illustrate program use, three basic types of simulations were carried out. The results provide an initial indication of ACLS performance during (1) a static drop, (2) landing impact, and (3) taxi over a runway irregularity

    Application of Spread-Spectrum Ultrasonic Evaluation to Concrete Structures

    Get PDF
    Spread-Spectrum Ultrasonic Evaluation (SSUE) is an emerging technology for the global testing of structures and materials [1]. It incorporates the correlation properties of pseudo-random signals into ultrasonic NDE using spread-spectrum technology. The SSUE instrument records the ultrasonic correlation signature that is representation of the aggregate acoustic state of the test sample. The measured ultrasonic correlation signature is used for the detection of changes in the acoustic state of the test object. One major advantage of the SSUE technique is that it provides a global inspection of the material or structure without scanning. Some examples of unique SSUE applications are when; 1) the test object is of complex geometry or too large for scanning or, 2) the test material is a highly attenuative material such as concrete, wood, or composites. This paper reports the progress in applying the SSUE technique to concrete. The aim of the reported research is to study the propagation of the spread-spectrum signal in concrete structures of various sizes and determine the sensitivity of the SSUE correlation signature to changes in the various acoustic properties of the concrete object. A comparison of the SSUE technique with conventional ultrasonic NDE techniques for concrete testing is done and advantages of this technique for standard concrete inspection methods are discussed

    Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition

    Get PDF
    Acknowledgments We acknowledge Jeanette Wagener and Louise Walker for performing the HPAEC-PAD analysis and Neil Gow for providing access to the Dionex HPAEC-PAD instrumentation. We thank Mike Cook and the Duke University Cancer Center Flow Cytometry Shared Resource for assistance with the flow cytometry. We also acknowledge Michelle Plue and the Duke University Shared Materials Institute Facility for performing the transmission electron microscopy. We thank Marcel Wu¨thrich for providing the MyD88-/-and TLR2/4-/- mice, and Mari Shinohara and Elizabeth Deerhake for providing the Dectin-1-/- mice. Funding: These experiments were supported by a National Institutes of Health grant awarded to JAA and FLW, Jr. (R01 AI074677, https://grants.nih.gov/grants/oer.html). CM and colleagues Jeanette Wagener, Louise Walker, Neil Gow were supported by the Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377, https://wellcome.ac.uk), Wellcome Trust Senior Investigator Award (101873) and the MRC Centre for Medical Mycology (MR/N006364/1, https://www.abdn.ac.uk/cmm/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    The Vaginal Microbiome: Disease, Genetics and the Environment

    Get PDF
    The vagina is an interactive interface between the host and the environment. Its surface is covered by a protective epithelium colonized by bacteria and other microorganisms. The ectocervix is nonsterile, whereas the endocervix and the upper genital tract are assumed to be sterile in healthy women. Therefore, the cervix serves a pivotal role as a gatekeeper to protect the upper genital tract from microbial invasion and subsequent reproductive pathology. Microorganisms that cross this barrier can cause preterm labor, pelvic inflammatory disease, and other gynecologic and reproductive disorders. Homeostasis of the microbiome in the vagina and ectocervix plays a paramount role in reproductive health. Depending on its composition, the microbiome may protect the vagina from infectious or non-infectious diseases, or it may enhance its susceptibility to them. Because of the nature of this organ, and the fact that it is continuously colonized by bacteria from birth to death, it is virtually certain that this rich environment evolved in concert with its microbial flora. Specific interactions dictated by the genetics of both the host and microbes are likely responsible for maintaining both the environment and the microbiome. However, the genetic basis of these interactions in both the host and the bacterial colonizers is currently unknown. _Lactobacillus_ species are associated with vaginal health, but the role of these species in the maintenance of health is not yet well defined. Similarly, other species, including those representing minor components of the overall flora, undoubtedly influence the ability of potential pathogens to thrive and cause disease. Gross alterations in the vaginal microbiome are frequently observed in women with bacterial vaginosis, but the exact etiology of this disorder is still unknown. There are also implications for vaginal flora in non-infectious conditions such as pregnancy, pre-term labor and birth, and possibly fertility and other aspects of women’s health. Conversely, the role of environmental factors in the maintenance of a healthy vaginal microbiome is largely unknown. To explore these issues, we have proposed to address the following questions:

*1.	Do the genes of the host contribute to the composition of the vaginal microbiome?* We hypothesize that genes of both host and bacteria have important impacts on the vaginal microbiome. We are addressing this question by examining the vaginal microbiomes of mono- and dizygotic twin pairs selected from the over 170,000 twin pairs in the Mid-Atlantic Twin Registry (MATR). Subsequent studies, beyond the scope of the current project, may investigate which host genes impact the microbial flora and how they do so.
*2.	What changes in the microbiome are associated with common non-infectious pathological states of the host?* We hypothesize that altered physiological (e.g., pregnancy) and pathologic (e.g., immune suppression) conditions, or environmental exposures (e.g., antibiotics) predictably alter the vaginal microbiome. Conversely, certain vaginal microbiome characteristics are thought to contribute to a woman’s risk for outcomes such as preterm delivery. We are addressing this question by recruiting study participants from the ~40,000 annual clinical visits to women’s clinics of the VCU Health System.
*3.	What changes in the vaginal microbiome are associated with relevant infectious diseases and conditions?* We hypothesize that susceptibility to infectious disease (e.g. HPV, _Chlamydia_ infection, vaginitis, vaginosis, etc.) is impacted by the vaginal microbiome. In turn, these infectious conditions clearly can affect the ability of other bacteria to colonize and cause pathology. Again, we are exploring these issues by recruiting participants from visitors to women’s clinics in the VCU Health System.

Three kinds of sequence data are generated in this project: i) rDNA sequences from vaginal microbes; ii) whole metagenome shotgun sequences from vaginal samples; and iii) whole genome shotgun sequences of bacterial clones selected from vaginal samples. The study includes samples from three vaginal sites: mid-vaginal, cervical, and introital. The data sets also include buccal and perianal samples from all twin participants. Samples from these additional sites are used to test the hypothesis of a per continuum spread of bacteria in relation to vaginal health. An extended set of clinical metadata associated with these sequences are deposited with dbGAP. We have currently collected over 4,400 samples from ~100 twins and over 450 clinical participants. We have analyzed and deposited data for 480 rDNA samples, eight whole metagenome shotgun samples, and over 50 complete bacterial genomes. These data are available to accredited investigators according to NIH and Human Microbiome Project (HMP) guidelines. The bacterial clones are deposited in the Biodefense and Emerging Infections Research Resources Repository ("http://www.beiresources.org/":http://www.beiresources.org/). 

In addition to the extensive sequence data obtained in this study, we are collecting metadata associated with each of the study participants. Thus, participants are asked to complete an extensive health history questionnaire at the time samples are collected. Selected clinical data associated with the visit are also obtained, and relevant information is collected from the medical records when available. This data is maintained securely in a HIPAA-compliant data system as required by VCU’s Institutional Review Board (IRB). The preponderance of these data (i.e., that judged appropriate by NIH staff and VCU’s IRB are deposited at dbGAP ("http://www.ncbi.nlm.nih.gov/gap":http://www.ncbi.nlm.nih.gov/gap). Selected fields of this data have been identified by NIH staff as ‘too sensitive’ and are not available in dbGAP. Individuals requiring access to these data fields are asked to contact the PI of this project or NIH Program Staff. 
&#xa

    Fundamental social motives measured across forty-two cultures in two waves

    Get PDF
    How does psychology vary across human societies? The fundamental social motives framework adopts an evolutionary approach to capture the broad range of human social goals within a taxonomy of ancestrally recurring threats and opportunities. These motives—self-protection, disease avoidance, affiliation, status, mate acquisition, mate retention, and kin care—are high in fitness relevance and everyday salience, yet understudied cross-culturally. Here, we gathered data on these motives in 41 countries (N=15,885) in two cross-sectional waves, including 19 countries (N=11,095) for which data were gathered in both waves. Wave 1 was collected from 2016 through mid-2019 (32 countries, N=9353; 3537 male, 5574 female; Mage=24.58, SD=8.07). Wave 2 was collected from May through October 2020, during the COVID-19 pandemic (N=6532; 2194 male, 4165 female; Mage=28.82, SD=11.49). These data can be used to assess differences and similarities in people’s fundamental social motives both across and within cultures, at different time points, and in relation to other commonly studied cultural indicators and outcomes

    On the Accuracy, Media Representation, and Public Perception of Psychological Scientists’ Judgments of Societal Change

    Get PDF
    At the onset of the COVID-19 pandemic, psychological scientists frequently made on-the-record predictions in public media about how individuals and society would change. Such predictions were often made outside these scientists’ areas of expertise, with justifications based on intuition, heuristics, and analogical reasoning (Study 1; N = 719 statements). How accurate are these kinds of judgments regarding societal change? In Study 2, we obtained predictions from scientists (N = 717) and lay Americans (N = 394) in the spring of 2020 regarding the direction of change for a range of social and psychological phenomena. We compared them to objective data obtained at six months and one year. To further probe how experience impacts such judgments, six months later (Study 3), we obtained retrospective judgments of societal change for the same domains (Nscientists = 270; NlayPeople = 411). Bayesian analysis suggested greater credibility of the null hypothesis that scientists’ judgments were at chance on average for both prospective and retrospective judgments. Moreover, neither domain-general expertise (i.e., judgmental accuracy of scientists compared to laypeople) nor self-identified domain-specific expertise improved accuracy. In a follow-up study on meta-accuracy (Study 4), we show that the public nevertheless expects psychological scientists to make more accurate predictions about individual and societal change compared to most other scientific disciplines, politicians, and non-scientists, and they prefer to follow their recommendations. These findings raise questions about the role psychological scientists could and should play in helping the public and policymakers plan for future events

    Validation of the Tetracycline Regulatable Gene Expression System for the Study of the Pathogenesis of Infectious Disease

    Get PDF
    Understanding the pathogenesis of infectious disease requires the examination and successful integration of parameters related to both microbial virulence and host responses. As a practical and powerful method to control microbial gene expression, including in vivo, the tetracycline-regulatable system has recently gained the favor of many investigative groups. However, some immunomodulatory effects of the tetracyclines, including doxycycline, could potentially limit its use to evaluate host responses during infection. Here we have used a well-established murine model of disseminated candidiasis, which is highly dependent on both the virulence displayed by the fungal cells and on the host immune status, to validate the use of this system. We demonstrate that the pathogenesis of the wild type C. albicans CAF2-1 strain, which does not contain any tet-regulatable element, is not affected by the presence of doxycycline. Moreover levels of key cytokines, chemokines and many other biomarkers, as determined by multi-analyte profiling, remain essentially unaltered by the presence of the antibiotic during infection. Our results indicate that the levels of doxycycline needed to control the tetracycline regulatable promoter gene expression system have no detectable effect on global host responses during candidiasis. Because tet-regulatable systems are now being increasingly used in a variety of pathogenic microorganisms, these observations have wide implications in the field of infectious diseases
    corecore