NASACONTRACTOR REPORT

NASA CR-2530

NASA CR-2530

DYNAMIC HEAVE-PITCH ANALYSIS OF AIR CUSHION LANDING SYSTEMS

K. M. Captain, A. B. Boghani, and D. N. Wormley

Prepared by
FOSTER-MILLER ASSOCIATES, INC.
Waltham, Mass. 02154
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1975

[^0]
Table of Contents

Page
List of Illustrations iv
Principal Analysis Nomenclature vi

1. Introduction 1
2. Analysis 4
3. 1 Basic Configuration 4
4. 2 Assumptions 7
5. 3 Analytical Development 19
2.3.1 Static Model 20
2.3.2 State Equations 22
6. Ilustrative Simulations 26
3.1 Drop Test Simulation 26
7. 2 Landing Impact Simulation 27
8. 3 Obstacle Crossing Simulation 38
9. Conclusion 44
Appendix A - Program Organization and Use 45
Appendix B - Principal Program Nomenclature 65
Appendix C - Detailed Heave-Pitch Model Analysis 77
Appendix D - Subroutine Descriptions 107
Appendix E - Program Listing 147
Appendix F - Illustrative Simulation - Input Data and Sample Printout 185
Figure Description Page
Basic ACLS Configuration 5
Division of Trunk into Segmants 8
Hard Surface Clearance for Segment 9
The Positions of Centers of Pressure 11
ACLS Flow Model 12
Trunk Deformation Model 15
General Air Source Characteristics 16
Dynarnic ACLS Model 23
ACLS Static Characteristics 28
Time History of Cushion Motion 29
Time History of Acceleration 30
Time History of Cushion Pressure 31
Time History of Fan Flow 32
ACLS Static Characteristics 33
Cushion Motion during Landing Impact 34
Acceleration during Landing Impact 35
Cushion Pressure during Landing Impact 36
Fan Flow during Landing Impact 37
Cushion Motion during Taxi over Irregularity 39
Acceleration during Taxi over Irregularity 40
Cushion Pressure during Taxi over Irregularity 41
Fan Flow during Taxi over Irregularity 42
Table I Simulation Capabilities 3
A. 1 Program Flow Diagram 47
C. 1 Fluid Flow through ACLS 96
D. 1 Flow Diagram of TRUNK 110
D. 2 Flow Diagram of SHAPE 1 113
D. 3 Flow Diagram of SHAPE2 115
D. 4 Flow Diagram of FORCE 120
D. 5 Flow Diagram of FLOW 1 122
D. 6 Grid Generation of FLOW 1 Iteration 130DescriptionPage

| D. 7 | Flow Diagram of DYSYS | 136 |
| :--- | :--- | :--- | :--- | :--- |
| D. 8 | Flow Diagram of STEQU | 140 |
| D. 9 | Flow Diagram of FLOW2 | 143 |

Principal Analysis Nomenclature

a	Horizontal distance between inner and outer trunk attachment points
A	Orifice area
$\mathrm{A}_{\text {ch }}$	Cushion area
A_{ph}	Heave drag area of cushion
$\mathrm{A}_{\text {tkcn }}$	Trunk-ground contact area
b	Vertical distance between trunk attachment points
\bar{B}_{z}	Damping constant for each trunk segment
CC	Horizontal distance of CG from center of cushion
CG	Center of gravity
C_{d}	Discharge coefficient
$\mathrm{C}_{\text {enf }}$	Distance of center of aerodynamic heave drag area from CG
d	Distance between trunk attachment points
del_{x}	Width of straight trunk segment
Forcn	Force
Forct	Total vertical pressure force transmitted to aircraft
F	Trunk damping force
GG	Vertical distance of CG from center of cushion
g.	Gravity acceleration
h_{y}	Equilibrium height of trunk cross section
Inert	Pitch moment of inertia of aircraft about CG
ℓ	Peripheral trunk length
$\boldsymbol{l}_{\mathbf{p}}$	Peripheral distance from inner trunk attachment to first row of orifices

$\mathrm{L}_{\mathbf{s}}$	Straight section length of cushion
M	Number of straight trunk segments in one quarter of trunk periphery
Ma_{a}	Mass supported by ACLS
N	Number of curved trunk segments in one quarter of trunk periphery
N_{h}	Number of trunk orifices per row
N_{r}	Number of rows of trunk orifices
P	Pressure
$\mathrm{P}_{\text {ch }}$	Cushion pressure (gage)
$\mathrm{P}_{\text {fan }}$	Fan pressure rise
$\mathrm{P}_{\text {tk }}$	Trunk pressure (gage)
Q	Volume flow rate
$Q_{\text {chat }}$	Cushion-to-atmosphere volume flow
$Q_{\text {fan }}$	Fan volume flow
$Q_{\text {plat }}$	Bleed volume flow
$Q_{\text {plch }}$	Plenum-to-cushion volume flow
$Q_{\text {pltk }}$	Plenum-to-trunk volume flow
$Q_{\text {tkat }}$	Trunk-to-atmosphere volume flow
$Q_{\text {tkch }}$	Trunk-to-cushion volume flow
R_{1}	Outer radius of curvature of trunk
R_{2}	Inner radius of curvature of trunk
S_{h}	Trunk orifice row spacing
t	Time
Torf	Trunk-ground contact friction torque
Torn	Pressure torque

Torqt	Trunk damping torque
V	Heave velocity
V_{ch}	Total cushion volume
$\mathrm{V}_{\mathrm{plm}}$	Plenum volume
V_{tk}	Trunk volume
$\mathrm{X}_{\mathrm{ch}}{ }^{(\mathrm{i})}$	Distance of center of cushion pressure of ith segment from CC
X_{cg}	X-coordinate of CG
X_{cc}	X-coordinate of center of cushion
$\mathrm{X}_{\mathrm{cx}}(\mathrm{i})$	Distance of center of ith segment from CC
$\mathrm{X}_{\mathrm{h}}{ }^{(i)}$	X-coordinate of center of ith segment
$\mathrm{X}_{\text {tk }}(\mathrm{i})$	Distance of center of trunk pressure of ith segment from CC
$Y_{c g}$	Y-coordinate of CG
$Y_{\text {cc }}$	Y-coordinate of center of cushion
$\mathrm{Y}_{\mathrm{gh}}{ }^{(\mathrm{i})}$	Hard surface clearance for ith segment
$\mathrm{Y}_{\mathrm{g}}{ }^{(\mathrm{i})}$	Ground elevation corresponding to ith segment
$Y_{h}{ }^{(i)}$	Y-coordinate of center of ith segment
β	Angle subtended by curved segment of the trunk
$\delta(\mathrm{i})$	Angular position of ith curved segment
K	Polytropic expansion constant
ϕ	Pitch angle, positive clockwise
ϕ_{1}	Angle subtended by outer trunk segment (atmosphere side)
ϕ_{2}	Angle subtended by inner trunk segment (cushion side)
ϕ_{3}	Angle subtended by cushion side of trunk deformation
${ }_{4} 4$	Angle subtended by atmosphere side of trunk deformation
ρ	Air density
μ	Coefficient of friction between the trunk and the ground

DYNAMIC HEAVE-PITCH ANALYSIS OF
 AIR CUSHION LANDING SYSTEMS

By K. M. Captain, A. B. Boghani, and D. N. Wormley Foster-Miller Associates, Inc.

1. Introduction

As part of the effort to advance Air Cushion Landing System (ACLS) technology, NASA has initiated a program to develop analytical tools to help evaluaie ACLS dynamic performance. This report describes the first two phases of this program, which are now complete.

The objective of these phases was to formulate a fundamental analysis of the dynamic behavior of the ACLS and develop a computer program to carry out the dynamic simulation. First, the heave (vertical) motion of the ACLS was analyzed, and the analysis was then extended, and a coupled heave-pitch model was formulated.

The mathematical models are based on a fundamental analysis of the body dynamics and fluid mechanics of the aircraft-cushion-runway interaction. The analysis takes into account the air source characteristics (fan, etc.), flow losses in the feeding ducts, trunk and cushion, the effects of fluid compressibility, and dynamic trunk deflections, including ground contact. The computer program developed is capable of simulating the dynamic motion of an ACLS-equipped aircraft caused by landing impact and taxi over an irregular runway, using input data such as cushion and trunk geometry, aircraft weight, fan characteristics, runway surface profile, etc.

The program can be used in three principal ways:

1. To determine static ACLS characteristics (equilibrium height, stiffness, static pressures, etc.), aid in fan
selection, and determine allowable limits for equilibrium cushion loading.
2. To evaluate dynamic landing and taxiing performance (g loading, heave and pitch motion, trunk deflections, hard surface clearance, etc.), including the vibration caused by runway irregularities.
3. To determine optimum values of design parameters (e.g., hole sizes and configuration, trunk shape, etc.) for improved dynamic performance (i.e., design guidelines).

The types of performance results that can be obtained from the computer program, which is described in the Appendices, are shown in Table I. Illustrative simulations of a scale model ACLS have been carried out and are presented in Section 3. These simulations show the results obtained from the program for three typical cases of interest a zero speed heave drop test, a $22.4 \mathrm{~m} / \mathrm{s}$ (50 mph) landing impact, and taxi over an irregular runway.

During the next phase of this program, the analysis will be extended to include coupled heave-pitch-roll simulations, and the analytical models will be verified and refined based on results obtained with a test cushion at NASA-Langley. After model verification, a series of additional simulations are planned to investigate a variety of potentially attractive ACLS configurations and develop guidelines for improved designs.
TABLE L. Simulation Capabilities

	Heave Performance	Heave-Pitch Performance
Determination of Static Characteristics	(a) Load-deflection curves and stiffness. (b) Fan flow and power requirements. (c) Maximum load capacity and fan stall margin.	(a) Load-deflection and torquerotation curves for cushion. (b) Heave and pitch stiffness. (c) Fan flow and power requirements. (d) Equilibrium conditions (pitch angle, trunk contact area, pressures, flows, etc.)
Dynamic Performance Evaluation	(a) Simulation of zero attitude drop test. (b) Estimation of landing impact heave vibration (g loading, trunk deflection, hard surface clearance, etc.).	(a) Simulation of drop tests with initial pitch angle. (b) Estimation of ACLS landing impact performance (g loading, heave and pitch motion, hard surface clearance, etc.). (c) Estimation of taxiing and ground handling dynamic performance (e.g., g loads during rough runway operation, effects of crossing specified obstacles, etc.).
Development of Design Guidelines	(a) Determination of effects of fan characteristics (including stall behavior) on landing impact absorption. (b) Determination of effects of trunk geometry and exit hole configuration on cushion performance. (c) Evaluation of plenum bleeding and direct cushion feeding schemes.	(a) Determination of effects of fan characteristics (including stall behavior) on landing impact absorption. (b) Determination of effects of trunk geometry and exit hole configuration on cushion performance. (c) Evaluation of plenum bleeding and direct cushion feeding schemes. (d) Effects of CG position on ACLS performance.

The analysis outlined herein is the generalized pitch-heave analysis, further details of which are given in Appendix C. The pure heave analysis - a special case of the heave-pitch analysis - is obtained by setting the torque and angular motion terms to zero.

2.1 Basic Configuration

The basic ACLS configuration analyzed is shown in
Figure l. The model includes four primary subsystems - i.e., the fan, the feeding system, the trunk and the cushion. The configuration of these systems has been chosen sufficiently general so that they can represent a wide variety of practical designs. Air from the fan flows through the ducts and plenum (feeding system) and enters the trunk. The trunk has several rows of orifices that communicate with the cushion and atmosphere. Thus, the airflow from the trunk has two components - one part entering the cushion and the other leaking directly to the atmosphere. The cushion flow exhausts to the atmosphere through the clearance gap formed between the trunk and ground. In addition to the basic flows described above, two other flows have been included in the model, for generality. These are the plenum bleed flow and the direct cushion flow. Plenum bleeding causes some of the air to flow directly from plenum (fan outlet) to atmosphere, and has been used in some designs to improve the dynamic characteristics of the air supply system. Direct flow from the plenum to the cushion can also improve dynamic response.

In plan, the cushion has an oval shape, made up of a rectangular section with semicircular ends. a and b are the horizontal and vertical distances between the points of attachment of the trunk to the aircraft body. The initial (undeformed) trunk shape is defined in terms of the above two parameters, and the perimeter ℓ and height h_{y}

(a) Plan View

Figure 1. Basic ACLS Configuration
as shown. S_{h} is the (uniform) spacing between the rows of peripherally distributed orifices. The number and orientation of the orifices can be selected independently in terms of the number of orifice rows $\left(\mathrm{N}_{\mathrm{r}}\right)$, the number of orifices per $\operatorname{row}^{\prime}\left(\mathrm{N}_{\mathrm{h}}\right)$, and the orientation parameter (ℓ_{p}). The cushion volume consists of two parts: an active (dynamically varying) region and a dead (static) region. The active cushion olume depends only on the trunk shape and ground profile, and is computed by the program from cushion geometry. The dead volume (shown in Figure 1) includes recesses in the cushion cavity, and is a design variable.

2. 2 Assumptions

Order-of-magnitude analyses and available test data have provided the initial basis for determining the principal assumptions of the heave-pitch analysis. These assumptions are summarized below.
(a) Computation of the trunk and cushion parameters (trunk volume, cushion area, etc.) is carried out by dividing the trunk and cushion into segments, as shown in Figure 2. The parameters are first calculated for each individual segment, and then added together to obtain parameter values for the full cushion.

The ground under any particular segment is considered parallel to the hard surface, and at an elevation corresponding to the ground profile at the segment center projection on the reference plane (as shown in Figure 3). This assumption represents the ground surface and the hard structure of the cushion by a series of short, parallel sections which, when chosen sufficiently

Plan

Figure 2. Division of Trunk into Segments

Figure 3. Hard Surface Clearance for Segment
small, closely approximate the actual ground profile and hard surface orientation.

The two types of segments are shown in Figure 2: Rectangular segments in the straight portion of the cushion, and pie-shaped sections at the curved ends.

The trunk and cushion pressure force components for each segment are found from the products of the appropriate pressures and areas, and are represented by concentrated forces acting at the respective centers of pressure, as shown in Figure 4.
(b) The flow analysis is based on a lumped parameter model of the ACLS as shown in Figure 5. Plenum, trunk and cushion pressures are assumed uniform (though unequal and dynamically varying). The plenum, trunk and cushion cavities are represented by their capacitance (volume). Pressure losses in the ducts and in the entrance and exit regions of the chambers are represented in terms of lumped orifice resistances.
(c) For typical ACLS designs, the fractional pressure drop across the orifices ($\Delta \mathrm{p} / \mathrm{p}$) is small (usually less than 0.1 , and changes in air density across the orifices will be negligible. Therefore, the orifice flow Q can be found from the incompressible flow quadratic relationship

$$
Q=C_{d} A \sqrt{\frac{2 \Delta p}{\rho}}
$$

a) No Trunk Contact with Ground

b) Trunk Contacting Ground

Figure 4. The Positions of Centers of Pressure

Figure 5. ACLS Flow Model
where

Within the chambers, however, air compressibility cannot be neglected, because dynamic density changes (d ρ / dt) will be significant. Therefore the effects of density changes in the plenum, trunk and cushion are included in the analysis. Density changes are determined from pressure changes through the polytropic relationship $\mathrm{p} / \rho^{\mathrm{K}}=$ constant, where the exponent K lies between 1 (isothermal expansion) and 1.4 (adiabatic expansion).
(d)

The trunk is modeled as a massless unstretchable membrane capable of bending freely. Initial calculations carried out for selected trunks of current interest indicate that the deforming pressure forces are very large compared to the inertia of the trunk material, so that changes in trunk shape will occur almost instantaneously, and the massless approximation will be valid.

With the assumption of no trunk stretch,* the trunk length around the cushion periphery will be constant. This means that, for uniform motion, every trunk element will remain in the same lateral position, since any lateral trunk motion would require peripheral stretching of

[^1]the trunk membrane. Therefore, to a first approximation, the shape of the trunk cross section, when out of ground contact, is "frozen" (i.e., independent of the pressure) and depends only on the initial prefabricated trunk shape (Figure 6a). When ground contact occurs (Figure 6b), the trunk material in the contact zone conforms with the ground surface by crumpling, while the part of the trunk not touching the ground remains undeformed. Initial observations of the deformation characteristics of the two trunks cited earlier support the idealized model of trunk behavior described above.
(e) The air source is characterized in terms of a static pressure-flow relationship, with hysteresis losses included to represent the effects of stall. The general source characteristic is shown in Figure 7. Curve AB represents the normal (unstalled) operating regime, while curve CD represents the stalled characteristic. The shape of the curves depends on the type of the air source, and by selecting an appropriate stall point A, recovery point C and curve shapes $A B$ and CD, a variety of stalling and non-stalling* air sources including axial and centrifugal fans can be simulated.

For any pressure, the flow is found by using the appropriate (unstalled or stalled) characteristic. At the start of the simulation (stall-free

[^2]$\begin{aligned} \text { Sector } & \\ \text { VI } & =\text { BDJ } \\ \text { VII } & =\text { BJI } \\ \text { VIII } & =\text { DFK } \\ \text { IX } & =\text { FLK }\end{aligned}$
Peripheral Length

initial conditions), the appropriate pressure-flow relationship is given by curve $A B$. When the pressure exceeds the stall pressure QPl, the flow decreases suddenly, and it is found from the stalled characteristic CD. Stalled operation along characteristic $C D$ continues as long as the pressure is above the recovery pressure QP2. When the pressure drops below QP2, the flow increases suddenly (i.e., recovery, and the pressure-flow relationship is given by the unstalled characteristic AB. The above discussion indicates that downstream pressure variations large enough to cause stall and recovery result in a net energy loss due to hysteresis (see Figure 7\%.

The present analysis is based on the initial assumption that the fan flow changes simultaneously with pressure. In practice, however, the effects of fluid inertance will introduce lags in the flow, particularly during the stall and recovery transitions. The effects of these lags will be to slow down fan stall and recovery, and hence slow down passage around the hysteresis loop shown in Figure 7. However, since typical fan flow lags are estimated to be small compared to the characteristic periods of ACLS motion, the lags will have only a small affect on the predictions of overall landing dynamics and aircraft g loading. Subsequently, detailed stall investigations mav require a more advanced model which includes fluid inertance and flow lags. The basis for development or this improved model will be established through dynamic fan tests scheduled later in the program.

Five mechanisms of energy dissipation are included in the analysis.
(i) Fan stall and recovery losses (see above).
(ii) Aerodynamic drag of the cushion. * A square law relationship is assumed, such that the drag force F is given by

$$
F=C_{D}^{A}{ }_{p} \frac{1}{2} \rho V^{2}
$$

where
C_{D} - heave drag coefficient
$A_{p} \quad-\quad$ projected area on which C_{D} is defined
$\rho \quad-\quad$ ambient air density
and
V - heave velocity cushion.
(iii) Damping due to trunk crumpling during ground contact (see Figure 6). In this case, the damping force F is assumed to be linearly proportional to the trunk segment deformation velocity, V_{s}. The trunk damping force acting on the aircraft is thus given by

$$
F=\sum_{i}\left(\bar{B}_{z} v_{s}\right)_{i}
$$

[^3]where \bar{B}_{z} is the damping constant for each trunk segment, and the summation is carried, out over all the segments. The damping constant is estimated for the trunk sizes and configurations of interest by dimensional analysis, using test data obtained with prototype cushions. The trunk damping force also develops a torque around the CG.
(iv) Energy losses in the orifices.
(v) Friction losses due to trunk-ground contact. The friction force which arises at the trunk-ground interface results in a horizontal retarding force and torque at the CG.
(g) Because of the presence of brake tread material, trunk imperfections, ground irregularities, etc., sealing of the trunk orifices and the cushion-toatmosphere exit area will not be complete, even when the trunk is in ground contact. The effects of incomplete orifice closure are taken into account in the analytical model through blockage factors that allow some leakage flow to occur even when the orifices are nominally closed.
2. 3 Analytical Development

The analysis provides
(a) The relationships that determine the static cushion characteristics (pressures, flows, etc.) existing at equilibrium. These relationships are also used to determine the initial conditions for the simulation.
(b) The differential equations of flow and motion (state equations) from which the pressures, flows, displacements, accelerations, etc. can be determined as functions of time.

2.3.1 Static Model

The equilibrium conditions are found as follows:
(a) By applying the steady-state flow continuity equations to the plenum, trunk and cushion cavities (see Figure 5).

$$
\begin{aligned}
& Q_{\text {fan }}=Q_{\text {plat }}+Q_{\text {pltk }}+Q_{\text {plch }} \\
& Q_{\text {pltk }}=Q_{\text {tkch }}+Q_{\text {that }} \\
& Q_{\text {chat }}=Q_{\text {plch }}+Q_{\text {tkch }}
\end{aligned}
$$

(b) By satisfying the fan flow constraints,

$$
Q_{\mathrm{fan}}=f\left(P_{\mathrm{fan}}\right)
$$

i. e., where the fan flow $Q_{\text {fan }}$ and pressure rise $P_{\text {fan }}$ are determined from the characteristic fan curve.
(c) From the static force balance equation

$$
\text { Force }=\left(P_{\text {ch }} A_{c h}+P_{t k} A_{t k c n}\right) \cos \phi
$$

where

Forcn - aircraft weight (in equil.)
$P_{c h}$ - cushion pressure
$A_{c h}$ - cushion area
$P_{\text {tk }}$ - trunk pressure
$A_{\text {tkcn }}$ - trunk area in ground
ϕ
contact

(d) From the static torque balance equation,

Torn $=0=\sum_{i=1}^{2(M+N)}\left[2 P_{c h}\left(A_{c h}(i)\right)\left(x_{c h}(i)-C C\right)\right.$

$$
\left.+2 P_{t k}\left(A_{t k c n}(i)\right)\left(X_{t k}(i)-C C\right)\right]
$$

where Torn - torque about CG (zero in equilibrium)
$A_{c h}(i)$ - cushion area corresponding to ith segment
$A_{\text {tken }}{ }^{(i)}$ - trunk contact area corresponding to ith segment
$X_{c h}(i)$ - distance between the center of pressure of the ith segment of the cushion and the geometric center of the cushion.
$X_{t k}(i)$ - distance between the center of pressure of the ith segment of the trunk and the geometric center of the cushion.

2.3.2 State Equations

The state equations are derived from the dynamic ACLS model (Figure 8) as follows.

1. Plenum Flow Continuity

The net inflow equals the rate of increase of fluid mass within the plenum
$\frac{d}{d t}\left(\rho V_{\text {lm }}\right)=\left(Q_{\text {fan }}-Q_{\text {plat }}-Q_{\text {pltk }}-Q_{\text {plch }}\right) \rho$
where ρ is the mean air density
2. Trunk Flow Continuity

Similar to (1) above
$\frac{\mathrm{d}}{\mathrm{dt}}\left(\rho \mathrm{V}_{\mathrm{tk}}\right)=\left(\mathrm{Q}_{\mathrm{pltk}}-\mathrm{Q}_{\mathrm{tkch}}-\mathrm{Q}_{\mathrm{tkat}}\right) \rho$
3. Cushion Flow Continuity

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\rho \mathrm{~V}_{\mathbf{c h}}\right)=\left(Q_{\text {plch }}+Q_{\text {tkch }}-Q_{\text {chat }}\right) \rho
$$

4. Force Balance about the cg

$$
M_{a} \frac{d^{2}}{d t^{2}} Y_{c g}=\left(P_{c h} A_{c h}+P_{t k} A_{t k c n}\right) \cos \phi
$$

$$
-\mathrm{M}_{\mathrm{a}} \mathrm{~g}-\underbrace{\frac{1}{2} \mathrm{C}_{D_{D}^{A}}^{\mathrm{ph}^{\prime}} \rho\left(\frac{\mathrm{dY} \mathrm{cg}}{\mathrm{dt}}\right)^{2}}_{\substack{\text { Aerodynamic Drag } \\ \text { Component }}}
$$

Fort
Trunk Damping Component

Figure 8. Dynamic ACLS Model
where
Forct $=2 \sum_{i=1}^{2(M+N)} \operatorname{Forct}(\mathrm{i})$
and

5. Torque Balance around the cg

$$
\begin{aligned}
\text { Inert } \cdot \frac{\mathrm{d}^{2} \phi}{\mathrm{dt}^{2}} & =2 \sum_{i=1}^{2(\mathrm{M}+\mathrm{N})} \mathrm{P}_{\mathrm{ch}^{2}} \mathrm{~A}_{\mathrm{ch}}(\mathrm{i})\left(\mathrm{X}_{\mathrm{ch}}(\mathrm{i})-\mathrm{CC}\right) \\
& +2 \sum_{i=1}^{2(\mathrm{M}+\mathrm{N})} \mathrm{P}_{\mathrm{tk}} \mathrm{~A}_{\mathrm{tk} \mathrm{cn}^{(i)}\left(\mathrm{X}_{\mathrm{tk}}(\mathrm{i})-\mathrm{CC}\right)} \\
& +\underbrace{\text { Torf }}_{\text {Ground friction torque }}
\end{aligned}
$$

$$
+\underbrace{D_{\text {drag force }}}_{\text {Torque due to Aerodynamic }} \underbrace{\frac{1}{2}} \mathrm{C}_{\mathrm{D}}^{\mathrm{A}_{\mathrm{ph}} \rho\left(\frac{d Y_{\mathrm{cg}}}{\mathrm{dt}}\right)^{2}} \mathrm{C}_{\mathrm{enf}}
$$

- Torqt

Trunk Damping Torque
where

$$
\begin{aligned}
& \text { Torf }=-2 \sum_{i=1}^{2(M+N)} P_{t k} A_{t k c n}(i) \mu\left(Y_{g h}(i)+G G\right) \\
& \text { Torqt }=2 \sum_{i=1}^{2(M+N)} \operatorname{Torqt}(i)
\end{aligned}
$$

where
$\operatorname{Torqt}(\mathrm{i})=\left\{\begin{array}{l}\frac{B_{z}}{4(\mathrm{M}+\mathrm{N})}\left(\frac{d Y_{c g}}{d t}+\frac{d \phi}{d t}\left(X_{c x}(i)-C C\right)\right) \\ \left(X_{t k}(i)-C C\right) \quad \begin{array}{l}\text { if the ith segment } \\ \text { is in ground contact }\end{array} \\ 0 \quad \begin{array}{l}\text { if the ith segment is not } \\ \text { in contact }\end{array}\end{array}\right.$

A computer program incorporating the heave and heave-pitch analysis has been developed. With this program, the dynamic behavior of an ACLS-equipped aircraft (g loading, trunk deflection, cushion pressure, etc.) can be determined for landing impact and taxi over an irregular runway, using input data such as cushion and trunk geometry, aircraft weight, fan characteristics, runway surface profile, etc. The organization and use of the computer simulation program is described in Appendix A.

Three types of illustrative simulations have been carried out, to demonstrate the capabilities of the program. They are
(a) A drop test simulation. (zero forward speed, pure heave. Torque and angular motion terms $=0$.)
(b) A landing impact simulation. (With forward speed and initial angle of attack.)
(c) A simulation of aircraft dynamics when crossing a runway obstacle.

In the above simulations, the input parameters corresponded to a model cushion that will be tested in a subsequent phase of this program to verify and refine the analytical model. The general geometry of the model cushion is defined by Figure 1 and the detailed geometric input parameters are listed in Appendix F. The computations have been made in English units and converted to SI units.

3.1 Drop Test Simulation

The drop test simulation of the cushion has been carried out for a static load of 1220 newtons (275 lbs .) and a drop height of 0.152 m (6 in.). The corresponding impact velocity is about $1.5 \mathrm{~m} / \mathrm{sec}$. ($5 \mathrm{ft} / \mathrm{sec}$.). The simulation results are shown in Figures 9 through 13.

The static characteristics show that the cushion pressure increases with load, and the flow and hard surface clearance decrease with load, as expected. The maximum load capacity of the cushion (i.e., the peak load for which stall-free fan operation is possible) is about 4000 newtons (900 lbs.), which is about three times the static load. The time history of cushion motion shows that the peak trunk deflection is about 38 mm (1.5 in), which is well within the static hard surface clearance of $185 \mathrm{~mm}(0.611 \mathrm{ft})$. The period of one cycle of oscillation is about $0.15-0.2 \mathrm{sec}$, which corresponds to a characteristic heave frequency of about $5-6 \mathrm{hz}$. The peak acceleration is about $50 \mathrm{~m} / \mathrm{s}^{2}(5 \mathrm{~g})$. At impact, the cushion pressure increases to about four times its equilibrium value, and this causes the fan to stall. As the pressure drops, the fan recovers, and remains in the stall-free operating regime throughout the remainder of the simulation. Prolonged heave motion excited by repeated fan stall and recovery is thus inhibited. Although the impact disturbance begins to die out after the initial bounce (i.e., the system is dynamically stable), the low cushion damping indicates that several additional cycles will be required before the cushion reaches equilibrium.

3. 2 Landing Impact Simulation

The landing impact simulation has been carried out for a static load of 1220 newtons (275 lbs), and an initial cg height of 0.52 m (1.7 ft) (touchdown sink speed of $1.52 \mathrm{~m} / \mathrm{s}$). The touchdown (forward) speed was chosen at $22.4 \mathrm{~m} / \mathrm{s}$ (50 mph), with an initial angle of attack of 5°. The simulation results are shown in Figures 14 through 18.

The static characteristics (Figure 14) illustrate that the cg elevation increases as the load reduces. The slope of the loaddeflection curve (stiffness) is smaller for a non-zero pitch angle than for a zero pitch angle, because non-uniform trunk contact results in a lower restoring force than uniform trunk contact.

ACLS Static Characteristics
Figure 9

Static cushion load 1220 newtons (275 lbs) 0.152 m (6 inch) level drop

Time History of Cushion Motion

Figure 10

Static cushion load 1220 newtons (275 lbs)
0.152 m (6 inch) level drop

Time History of Acceleration

Figure 11

Static cushion load 1220 newtons (275 lbs)
0.152 m (6 inch) level drop

Figure 12

Static cushion load 1220 newtons (275 lbs) 0.152 m (6 inch) level drop

Time History of Fan Flow
Figure 13

Static cushion load $=1220$ newtons (275 lbs) Landing velocity $=22.4 \mathrm{~m} / \mathrm{s}(5 \mathrm{mph})$

Figure 15. Cushion Motion during Landing Impact
Static cushion load $=1220$ newtons (275 lbs) Landing velocity $=22.4 \mathrm{~m} / \mathrm{s}(50 \mathrm{mph})$

Static cushion load $=1220$ newtons (275 lbs) Landing velocity $=22.4 \mathrm{~m} / \mathrm{s}(50 \mathrm{mph})$ Touchdown sink rate $=1.52 \mathrm{~m} / \mathrm{s}(5 \mathrm{ft} / \mathrm{sec})$

Static cushion load $=1220$ newtons (275 lbs) Landing velocity $=22.4 \mathrm{~m} / \mathrm{s}(50 \mathrm{mph})$
Touchdown sink rate $=1.52 \mathrm{~m} / \mathrm{s}(5 \mathrm{ft} / \mathrm{sec})$

Figure 18 shows the time history of heave-pitch motion caused by landing impact. Initially, the cushion has a positive angle of attack. As it touches the ground, a clockwise torque acts upon it and causes the nose to pitch down. This torque arises because the rear of the cushion touches the runway before the front. After touchdown, the cushion begins to recover, and the heave and pitch motions begin to damp out.

Figures 16, 17 and 18 show the acceleration, cushion pressure and flow during landing. The pressure and acceleration build up as the aircraft descends. The increasing cushion pressure, however, causes the fan to stall, which reduces its output, and subsequently decreases the pressure and acceleration. As the pressure drops below the stall pressure, the fan recovers and the pressure and acceleration build up to a second peak, and then approach their respective equilibrium values.

3. 3 Obstacle Crossing Simulation

The obstacle crossing simulation has been carried out for a static load of 1220 newtons (275 lbs). Prior to obstacle impact, the aircraft is assumed to be moving straight and level, with a velocity of $22.4 \mathrm{~m} / \mathrm{s}(50 \mathrm{mph})$. The obstacle is represented by a rectangular cleat 0.4 m (1.3 ft) long and 89 mm (3.5 in) high. The simulation results are shown in Figures 19 through 22.

The time history of heave-pitch motion (Figure 19) shows that the aircraft (cushion) begins to pitch forward (clockwise) as the cushion first impacts the obstacle. This is because the friction force due to obstacle contact and the unbalanced (vertical) pressure force acting on the rear trunk give rise to a clockwise torque about the cg . The entry of the obstacle into the cushion also causes the cushion and trunk pressure force components to increase, which results in an upward heave motion of the aircraft. The upward motion continues
Static cushion load $=1220$ newtons (275 lbs)
Taxiing velocity $=22.4 \mathrm{~m} / \mathrm{s}(50 \mathrm{mph})$ Taxiing velocity $=22.4 \mathrm{~m} / \mathrm{s}(50 \mathrm{mph})$
Irregularity $=0.4 \mathrm{~m}(1.3 \mathrm{ft})$ long, 89

Figure 19. Cushion Motion during Taxi over Irregularity

Static cushion load $=1220$ newtons $(275 \mathrm{lbs})$
Taxiing velocity $=22.4 \mathrm{~m} / \mathrm{s}(50 \mathrm{mph})$
Irregularity $=0.4 \mathrm{~m}(1.3 \mathrm{ft})$ long, 89 mm

(3.5 inch) high cleat

Figure 21. Cushion Pressure during Taxi Over Irregularity
Static cushion load $=1220$ newtons (275 lbs) Taxding velocity $=22.4 \mathrm{~m} / \mathrm{s}(50 \mathrm{mph})$
Irregularity $=0.4 \mathrm{~m}(1.3 \mathrm{ft})$ long, 89 Irregularity $=(3.5$ inch $)$ high cleat

Figure 22. Fan Flow during Taxi Over Irregularity
until after the trunk leaves the ground. The upward force components then vanish, and the aircraft begins to descend. The initial pitching torque causes the pitch angle to build up to a maximum of about 7°, when the leading edge of the cushion contacts the ground and provides the restoring torque that causes the pitch disturbance to die out. The heave disturbance also begins to damp out.

Figures 20, 21 and 22 show the accelerations, cushion pressure and flow while crossing the obstacle. Initially, as the cushion impacts the obstacle, the pressure and heave acceleration build up. The increasing cushion pressure, however, causes the fan to stall, which reduces its output and subsequently decreases the pressure and acceleration. As the pressure drops below the stall pressure, the fan recovers, and the pressures and accelerations reach another peak at the second bounce, and then approach their equilibrium values.

The effort described in this report has been directed at developing fundamental analytical models of the heave and the heave-pitch motion of Air Cushion Landing Gear. These models have been implemented in a computer program delivered to NASA. The program is capable of simulating the dynamic heave and heave-pitch behavior (aircraft g loading and motion, trunk deflection, pressures, etc.) of an ACLS-equipped aircraft caused by landing impact and taxi over an irregular runway, using input data such as aircraft weight, ACLS geometry, fan characteristics, runway surface profile, etc. Three types of illustrative simulations have been carried out to demonstrate the capabilities of the program. The illustrative results show how drop tests, landing impact and rough runway operation can be simulated.

In the next phase of this program, a coupled heave-pitch-roll analysis will be developed. Also, experimental verification and refinement of the analysis using test data obtained at NASA-Langley with a model cushion will be performed. After the program capabilities have been verified, more extensive simulations are planned, to investigate a variety of potentially attractive cushion configurations and to develop guidelines for improved ACLS designs.

APPENDIX A - PROGRAM ORGANIZATION AND USE

The overall structure of the computer program developed for simulating the heave-pitch dynamics of the air cushion landing systems is described in this Appendix, along with instructions on its usage. Appendices B, D, E and F described various aspects of the program in greater details.

A. 1 Program Organization

The ACLS heave-pitch model is simulated as follows:
(a) The input data is read in.
(b) Initial geometry calculations are carried out.
(c) The static characteristics are computed and printed.
(d) The initial conditions for the dynamic simulation are determined.
(e) The state equations are integrated numerically to determine the time history of ACLS pressure and motion following landing impact.

The computer program that simulates ACLS heave-pitch dynamics is listed in Appendix E. The flow diagram is shown in Figure A. 1, and the computing sequence is described below.
(a) Data Input and Conversion

Initially, subroutine PROGIO is called which reads the input data cards through five other subroutines. Each card contains alphanumeric data which includes the name of each parameter, its value,
and dimension. The input parameters are printed directly after they are read. Some of the less frequently altered parameters are specified directly in the main program. The input data is then converted, in this case, to ft-lb-sec units prior to the computations.
(b) Initial Geometry Calculations

Subroutine TRUNK calculates the trunk shape parameters (radii of curvature, subtended angles, etc.) from the input parameters l, h_{y}, a, b, d and L_{s} (see Figure 1). Subroutine SEGMNT divides the trunk into a (user specified) number of segments and calculates the segment center distance from the center of the cushion. Subroutine SHAPE 1 then calculates the trunk cross section area, trunk volume, cushion area, trunk-to-cushion orifice area, trunk-to-atmosphere orifice area, and distance of the center of cushion pressure for each segment, when the trunk is out of ground contact.

These three subroutines, TRUNK, SEGMENT and SHAPEI, are called only once in the program. The values of areas and volumes assessed by SHAPEl are independent of ACLS motion. Another subroutine, SHAPE2, is called in the program whenever updated values of areas and volumes are required.

(c) Static Characteristics

Subroutine FLOWl is called next. This subroutine calculates the static characteristics, i.e., the height of the aircraft center of gravity from the ground, pitch angle, gap area, plenum, trunk and cushion pressures, and total flow for various combinations of aircraft load and position of the center of gravity. This is accomplished by calling six subroutines; COORDN, PROFILE, CLRNCE, SHAPE2, FORCE and CMPCRV. The first four subroutines calculate the required areas and volumes of the ACLS for a particular combination of CG height and pitch angle. Subroutine FORCE calculates the torque and load developed

Figure A. 1 Program Flow Diagram - Initialization

inates

Ontrut

Final equilibrium conditions. Static charecterictice, i.e.. losi and CC position
ve. ca helkht, pitch tagle, gep arta, presemres and liow

Centinued on mext page

Figure A. 1 (Continued). Program Flow Diagram - Static Part

Figure A. 1 (Concluded): Program Flow Diagram - Dynamic Part
by the particular configuration and CMPCRV supplies the fan characteristics to FLOWl.

The static characteristics are used to determine the final equilibrium values of the aircraft CG height above the ground, pitch angle, areas, volumes, pressures, flows and stiffness for the input value of aircraft weight and CG position. The static characteristics (10 values) and the final equilibrium values are then printed.
(d) Initial Conditions

Initial values of the state variables are needed to start the Runge-Kutta integration in the dynamic simulation. The initial values of CG coordinates, pitch angle, sink rate, horizontal velocity and pitch (rotational) velocity are supplied by the user. Subroutines COORDN, PROFILE, CLRNCE and SHAPE2 are called to determine the initial cushion and trunk geometry. Then the initial values of the cushion pressure, trunk pressure and plenum pressure are calculated from the static characteristics, computed as described in (c) above.
(e) Integration of State Equations

The dynamic simulation is coordinated by subroutine DYSYS. DYSYS calls subroutine RKDIF at each time step - RKDIF starts with the values of the seven state variables (plenum, trunk and cushion pressure, CG height, sink rate, pitch angle and pitch velocity) at a given time (t), and calculates new values of these variables at time ($t+d t$) by numerical integration using the Runge-Kutta method. The new values are obtained from derivations of the state variables at time t, and at intermediate times between t and $t+d t$. The calculation of derivatives is carried out in subroutine STEQU. STEQU contains the basic differential equations of pressure and motion of the ACLS. In order to calculate the derivatives, STEQU requires values of flows, forces and torques for the given values of the state variables. This is
accomplished by calling subroutines COORDN, PROFILE, CLRNCE, SHAPE2, FLOW2 and FORCE, in that order. The first four subroutines calculate the various trunk and cushion areas and volumes corresponding to the ACLS orientation at a particular instant of time. From this data, subroutine FLOW2 determines the various flows through the ACLS. Subroutine CMPCRV supplies FLOW2 with data on the pressure-flow fan characteristics. Finally, subroutine FORCE calculates the forces and torques acting on the aircraft cg using the values of the appropriate pressures and areas supplied by STEQU and SHAPE2 respectively.

The above procedure is repeated for each time increment, and output values of pressures, flows, motion, etc., are printed at appropriate (user specified) intervals. The program terminates when the simulation time equals the user supplied time limit.

A. 2. 1 Input Data Format

Input data is supplied to the program in three ways.
(a) By data cards that are read in after program compilation (i.e., through the READ statement).
(b) By data specifications that are included within the program (i.e., through DATA and other specification statements).
(c) Through Subroutine PROFILE which is used to specify ground profile information.

Method (a) is used primarily to specify the parameters that are design variables and/or are likely to be frequently changed (aircraft weight, initial sink rate, initial pitch angle, etc.). Method (b) is used primarily for parameters which are likely to be changed less frequently (discharge coefficients, polytropic exponent, etc.). The format for specifying these two types of input data are given below. The input data are in English units.

The profile description essentially consists of supplying values of ground elevation $Y_{g}(i)$ corresponding to segment i (Eq. (19), Appendix C). This can be accomplished in one of several ways, e.g., using function subprograms, data cards, etc., depending on user preference and form in which the data is available.

A.2.1.1 Data Cards

The following data cards are required to execute the program. Most cards have an alphanumeric input format. The numerical values are placed within the ' F ', ' I ' or ' E ' fields. The ' A ' fields are used to provide parameter names and units, and other legends for user convenience.

$1-7$	Header cards	80A1		
	(The user can print a heading using these cards)			
	Aircraft Parameters			
8	Aircraft weight (lbs)	30A1,	F10.4,	10A1
9	Aircraft pitch inertia about CG (slug ft^{2})	30A1,	F10.4,	10A1
10	Horizontal distance of CG from geometric center of cushion, CC (ft)	30A1,	F10.4,	10A1
11	Vertical distance of CG from geometric center of cushion, GG (ft)	30A1,	F10.4,	10A1
12	Heave drag coefficient, C_{D}	30A1,	F10.4,	10A1
13	Heave drag area, $A_{p h}\left(\mathrm{ft}^{2}\right)$	30A1,	F10.4,	10A1
	Trunk Parameters			
14	Header card	80 Al		
15	Straight section length of cushion, $L_{s}(f t)$	30A1,	F10.4,	10A1
16	Distance between inner trunk attachment points, d (ft)	30A1,	F10.4,	10A1
17	Horizontal distance between inner and outer trunk attachment points, a (ft)	30A1,	F10.4,	10 Al
18	Vertical distance between inner and outer trunk attachment points, b (ft)	30A1,	F10.4,	10A1
19	Peripheral length of trunk cross section, $\ell(f t)$	30A1,	F10.4,	10A1
20	Inflated trunk height (no load), $h_{y}(f t)$	30A1,	F10.4,	10A1
21		20^11,	-5	
22	Number of trunk orifices per row, N_{h}	30A1,	I5	

Card No.

23

Area of each trunk orifice, $A_{h}\left(\right.$ in $\left.^{2}\right)$
Spacing between trunk orifice rows, S_{h} (ft)

Header card
Peripheral distance between inner trunk attachment point and first row of holes, $L_{p}(f t)$
Air Supply Parameters
Header cards
Plenum-to-cushion orifice area, $A_{\text {plch }}\left(\mathrm{ft}^{2}\right)$

Plenum-to-trunk orifice area, $A_{\text {pltk }}\left(\mathrm{ft}^{2}\right)$
Plenum-to-atmosphere orifice area, $A_{\text {plat }}\left(\mathrm{ft}^{2}\right)$
Fan inlet orifice area, $A_{a t f n}\left(f t^{2}\right)$ (See Note 1)
Plenum volume, $V_{p l m}\left(\mathrm{ft}^{3}\right)$
Dead cushion volume, $V_{c h d}\left(\mathrm{ft}^{3}\right)$
Landing Approach Parameters
Header card
Initial X coordinate of CG, XCGI (ft)
Initial Y coordinate of CG, YCGI (ft)
Initial pitch angle, PHII (degrees)
Initial horizontal velocity, VELXI (ft/sec)

Initial sink rate, SINKRT (ft/sec)
Initial pitch velocity, DPHI (degrees/sec)

30A1, F10.4, 10A1

30A1, F10.4, 10A1
30A1, F10.4, 10A1 30A1, F10.4, 10A1 80A1

30A1, F10.4, 10A1

80A1

30A1, F10.4, 10A1
30A1, F10.4, 10A1

30A1, F10.4, 10A1
30A1, F10.4, 10A1

80A1
30A1, F10.4, 10A1
30A1, F10.4, 10A1
30A1, F10.4, 10A1

30A1, F10.4, 10A1
30A1, F10.4, 10A1

30A1, F10.4, 10A1

Environmental Conditions

42

Header card
80A1
Absolute atmospheric pressure, $P_{a t}(p s i a) 30 A 1, ~ F 10.4,10 A 1$
Ambient temperature $\left(^{\circ} \mathrm{F}\right) \quad$ 30A1, F10.4, 10Al
Fan Characteristics
Fan curve polynomial coefficient* α_{0} 40A1, E10.3
α_{1} 40A1, El0.3
α_{2} 40A1, El0.3
$\alpha_{3} \quad$ 40A1, E10. 3
α_{4} 40A1, E10.3
$\beta_{0} \quad 40 \mathrm{Al}, \mathrm{E} 10.3$
$\beta_{1} \quad 40 \mathrm{~A} 1, \mathrm{E} 10.3$
$\beta_{2} \quad$ 40A1, E10.3
$\beta_{3} \quad 40 \mathrm{Al}, \mathrm{E} 10.3$
$\beta_{4} \quad 40 \mathrm{Al}, \mathrm{E} 10.3$
Maximum unstalled fan pressure rise, QP1 40A1, E10.3
Minimum stalled fan pressure rise, QP2 40A1, El0.3
Minimum unstalled flow, QP3
Maximum unstalled flow, QP4
40A1, E10. 3
Maximum stalled flow, 'QP5
40A1, E10. 3
Integration and Print Control Parameters
Integration time step, DTIME (sec) 40A1, E10.3
Simulation time limit, FTIME (sec) 40A1, E10.3
Number of time steps between printing, MM

40A1, 15
*See Figure 7 for explanation of symbols on cards 45-59.

Trunk Segment Parameters

63
Number of straight sections in one-fourth of the periphery, M

40A1, I5
Number of curved sections in one-fourth
of the periphery, N
40A1, I5

Note 1. Care must be taken to choose the proper area for the fan upstream orifice. When the orifice is far enough upstream so that it is not affected by the fan inlet flow field, the effective orifice area can be found from geometry. When the upstream orifice is close to the fan inlet (e.g., partial inlet blockage), the flow patterns in the fan inlet will affect the orifice characteristics, and the effective orifice area must be found from measurements of the flow and pressure drop. For values of $A_{a t f n}$ larger than $1 \mathrm{ft}^{2}$, the simulation is carried out with an unrestricted fan inlet (no upstream orifice). The value $1 \mathrm{ft}^{2}$ is chosen arbitrarily and it can be altered, if necessary, by changing Statement No. . 76 in Subroutine FLOW2 on page 177.

A. 2.1.2 Internal Data

The internal data are specified at the beginning of the main program (see line marked 'DATA ACQUISITION', Page 149, Appendix E). They are as follows.

| CPA | $-\quad$Discharge coefficient, plenum-to-
 atmosphere orifice |
| :--- | :--- | :--- |
| CAF | $-\quad$Discharge coefficient, fan inlet orifice |
| CPC | -Discharge coefficient, plenum-to-cushion
 orifice |
| CPT | Discharge coefficient, plenum-to-trunk
 orifice |
| CTC | -Discharge coefficient, trunk-to-cushion
 orifice |
| CGAP | Discharge coefficient of clearance gap |

CTA	-	Discharge coefficient, trunk-to-atmosphere orifice
CKK	-	Polytropic expansion exponent
GEC	-	Ground effect coefficient (See Note 1)
ZETA	-	Trunk damping ratio (See Note 2)
PERTK	-	Trunk orifice blockage parameter (See Note 3)
PERCH	-	Cushion exit seal parameter (See Note 3)
U	-	Ground-trunk friction coefficient (See Note 4)
DECCL	-	Aircraft horizontal deceleration rate (ft/sec ${ }^{2}$) (See Note 5)

Note 1. When the ACLS is high above the ground, the cushion pressure (gage) will be zero. Although simulation of the full dynamic model will predict this condition, significant computing economy can be achieved by simplifying the full model at large heights by assuming zero cushion pressure rather than obtaining this same result through solution of the differential equation of cushion pressure. The ground effect coefficient is the factor which determines the ground effect area (cushion-toatmosphere gap) above which the cushion pressure is set equal to zero rather than computed from the full ACLS simulation. The ground effect gap area, A gapg' is determined from the ground effect coefficient as follows

$$
A_{\text {gapg }}=(G E C) A_{\text {gap }}
$$

where $A_{\text {gap } \ell}$ is the equilibrium gap area found from the static loaddeflection characteristic. Initial simulations with GEC $=10$ have given satisfactory results. Larger values will require smaller integration time steps, and involve more computation. Smaller values may allow larger
time steps, but can lead to starting transients when the ACLS comes into ground effect.

Note 2. The trunk damping ratio zeta, ζ, is a nondimensional measure of trunk damping. The damping coefficient for each segment, \bar{B}_{z}, [Assumption (f) in Section 2.2] is obtained from the damping ratio as follows

$$
\bar{B}_{z}=2 \zeta \sqrt{\text { Heave Stiffness } \times \text { Mass }} / 4(M+N)
$$

This assumes that the damping force is equally divided amongst all trunk segments. Test data and dimensional analysis will provide the basis for estimating the trunk damping ratio. Initial data indicates that the damping ratio will be in the range of $0.05-0.1$.

Note 3. During ground contact, the trunk orifices nominally covered by the ground will not be completely blocked, and the cushion will not be perfectly sealed, because of ground irregularities, trunk ribs and imperfections and brake pads. Therefore, some small flow will leak out the cushion to the atmosphere and through the covered trunk orifices even during ground contact. PERTK and PERCH are measures of the trunk and cushion leakage areas during ground contact. PERTK is the fraction of the trunk orifice area that is blocked during ground contact. For example, PERTK $=.85$ signifies that 85% of the area of the trunk orifices in ground contact is blocked, and the leakage flow occurs through the unblocked 15% of the orifice area. PERCH is the ratio of the cushion leakage area during ground contact to the equilibrium clearance gap area. For example, $\mathrm{PERCH}=.15$ signifies that during ground contact, 15% of the equilibrium clearance gap area remains unblocked.

Typically, when the brake pads are not deployed, PERTK will be aoout. 85 -. 9 and PERCH will be about. 1 - . 15 (i.e., 85-90\% blockage in both cases). When the brake pads are deployed, the blockage will be reduced, and appropriate values for PERTK and PERCH can be estimated from pad geometry.

Note 4. The trunk-ground friction coefficient is required to calculate the pitching torque due to friction force. It depends on many factors, including the brake pads and/or trunk material characteristics, ground surface characteristics, etc. For simulations carried out thus far, the friction coefficient has been assumed to lie in the range of 0.4 to 0.5 .

Note 5. In this simulation, the aircraft is assumed to decelerate, in a horizontal direction, at a constant (user selected) rate.

A. 2.2 Program Output

The output printout provides the following data. (See Appendix F.)

> 1. The Input Parameters

Aircraft weight and pitch inertia, location of cg, initial approach parameters (sink rate, etc.), ACLS configuration, etc.

2. Final Equilibrium Conditions

(These are the conditions that exist after the landing dynamics have damped out.)

Height of CG
Pitch Angle
Cushion Perimeter

> Cushion Volume
> Trunk Volume
> Gap Area, Cushion-atmosphere
> Cushion Area
> Trunk Contact Area
> Orifice Area, Trunk-atmosphere
> Orifice Area, Trunk-cushion
> Cushion Pressure (gage)
> Trunk Pressure (gage)
> Plenum Pressure (gage)
> Total Volume Air Flow
> Total Volume Cushion Flow
> Volume Flow, Plenum to Cushion
> Volume Flow, Plenum to Trunk
> Volume Flow, Trunk to Cushion
> Volume Flow, Trunk to Atmosphere
> Volume Flow, Plenum to Atmosphere
> Stall Margin (See Note 1)
> Heave Stiffness
> Pitch Stiffness
> Theoretical Fan Power

3. Static Characteristics

The height of the center of gravity above the ground, pitch angle, air gap area, cushion and trunk pressures and total flow for various combinations of force and torque loads (i.e., for various weights and offset distances from the center of the cushion).

4. Dynamic Simulation

Evaluation of the following variables at successive intervals of time during aircraft approach, touchdown and taxi.

Acceleration (vertical)
Velocity (sink rate)
CG Height (Y coordinate of cg) (from reference X axis)
X coordinate of $C G$
Trunk Pressure (gage)
Cushion Pressure (gage)
Fan Volume Flow
Pitch Angle
Trunk-to-Cushion Volume Flow
Trunk-to-Atmosphere Volume Flow
Cushion-to-Atmosphere Volume Flow
Gap Area (clearance area between trunk and ground)

Note 1. The fan stall margin is the maximum percentage rise in fan pressure that can occur without fan stall. This parameter is a measure of the ability of the system to absorb dynamic impact without fan stall. When the stall margin is below 5% (i.e., impact stall likely), the statement 'FAN CRITICALLY STABLE' appears in the program output.
A. 2.3 Premature Program Termination

Premature program termination can occur under the following conditions:
(a) When the input parameters do not allow feasible solutions to be obtained. For instance, when the aircraft weight cannot be supported due to insufficient output from the fan.
(b) When the integration time increment DTIME is chosen too large, and causes numerical instabilities during the solution of the differential equations.

A. 2. 3. 1 Diagnostic Messages

When input parameter values do not allow a feasible solution, one of the following diagnostic statements is printed prior to program termination.

1. INFEASIBLE TRUNK GEOMETRY'

This message indicates that the geometrical trunk parameters a, b, ℓ and h_{y} are such that a feasible solution for the trunk shape cannot be obtained - i.e., a real curve joining the trunk attachment points, and having length l and height h_{y} cannot be found.
2. 'INFEASIBLE CONFIGURATION'

This message indicates that the ACLS configuration specified by the user is infeasible. The means to correct this situation include:
(a) Reduced load
(b) Increased fan output
(c) Reduced plenum bleed area
3. 'CHANGE VALUE OF XTOL'

In the rare case that this message appears, the situation is remedied by increasing the iteration tolerance value XTOL.

A. 2.3.2 Numerical Instability

When the user supplied integration time step DTIME is too large, the Runge Kutta integration scheme will not converge, and the program will terminate due to field overflow. In such cases, a smaller time step will eliminate the problem. Initial results indicate that for typical ACLS configurations and operating conditions, time steps less than about $5 \times 10^{-4} \mathrm{sec}$ give satisfactory results.

A. 2. 4 Heave Simulation

The heave-pitch simulation program can be adapted for simulating just the heave motion by assuming a very high value for aircraft pitch inertia (say, 10^{10} slug ft^{2}). The pitch inertia data are supplied by card No. 9, as described in Section A.2.1.1. Initial pitch angle and pitch velocity (Card No. 38 and 41, respectively) should be zero, while simulating just the heave motion.

APPENDIX B - PRINCIPAL PROGRAM NOMENCLATURE*

The symbols used in the analysis and the corresponding computer program variable names are defined below. All program variables are computed in the appropriate ft-lb-sec units except where indicated to the contrary.

Symbol	Program Variable Name	Explanation
a	A	Horizontal distance between inner and outer trunk attachment points
$\mathrm{A}_{1}-\mathrm{A}_{9}$	Al-A9	Area of trunk sectors used in volume computations
$\mathrm{A}_{\text {atfn }}$	AATFN	Fan inlet orifice area
-	ACCEL	Aircraft acceleration (positive upwards)
${ }^{\text {A }}$ ch	ACH	Cushion area
$\mathrm{A}_{\text {chi }}{ }^{(\mathrm{i})}$	ACHI(I)	I value of cushion area (i.e., with no ground contact) of ith segment
$A_{\text {chr }}{ }^{(i)}$	ACHR(I)	R value of cushion area (i. e., decrement due to ground contact) of ith segment
-	ADIF	Gap area above ground effect gap area
$A_{\text {gap }}$	AGAP	Clearance gap area
$A_{\text {gape }}$	AGAPE	Equilibrium gap area
$A_{\text {gapi }}(\mathbf{i})$	AGAPI(I)	I value of clearance gap area (i.e., with no ground contact) of ith segment
-	AGAPP(I)	Iterated gap area
$A_{\text {gapr }}(\mathrm{i})$	AGAPR(I)	R value of clearance gap area (i.e., decrement due to ground contact) of ith segment
-	AGAPS(I)	Static values of AGAP
A_{h}	AH	Area of trunk orifice

*Nomenclature is listed alphabetically by symbols. Therefore some program variable names do not appear alphabetically.

Program
Symbol
$A_{\text {leak }}$
ALEAK

PHA
APLAT
APLCH
APLTK
ATK
ATKI(I)

ATKR(I)

ATKAT
ATKATI(I)
$A_{\text {tkatr }}{ }^{(i)}$
$A_{\text {tkch }}$
$A_{\text {tkchi }}{ }^{(i)}$
$A_{t k c h r}{ }^{(i)}$
$A_{\text {tken }}$
$A_{\text {tkcni }}(\mathrm{i}) \quad$ ATKCNI(I)
$A_{t k c n r}(i)$
b
Variable Name
$A_{\text {tkat }}$
$A_{\text {tkati }}{ }^{(i)}$

ATKATR(I)

ATKCH
ATKCHI(I)

ATKCHR(I)

ATKCN

ATKCNR(I)

ATOL
B

Explanation

Minimum clearance gap area (caused by brake pads, imperfections, etc.)

Heave drag area of cushion
Plenum-to-atmosphere orifice area
Plenum-to-cushion orifice area
Plenum-to-trunk orifice area
Trunk cross sectional area
I value of trunk cross sectional area of ith segment
R value of trunk cross sectional area of ith segment

Trunk-to-atmosphere orifice area
I value of trunk-to-atmosphere orifice area of ith segment
R value of trunk-to-atmosphere orifice area of ith segment

Trunk-to-cushion orifice area
I value of trunk-to-cushion orifice area of ith segment
R value of trunk-to-cushion orifice area of ith segment

Trunk-ground contact area
I value of trunk-ground contact area of ith segment
R value of trunk-ground contact area of ith segment

Tolerance for gap area iteration
Vertical distance between trunk attachment points

	Program	
Symbol	Variable Name	Explanation
B_{z}	DAMPC	Trunk damping constant
\bar{B}_{z}	-	Damping constant for each trunk segment
C ${ }_{\text {af }}$	CAF	Discharge coefficient of atmosphere-to-fan orifice
CC	CC	Horizontal distance of CG from center of cushion
-	CCI	User supplied value of CC
-	$\operatorname{CCS}(1)$	Values of CC used in the static computations
$C_{\text {D }}$	HDC	Heave drag coefficient
$\mathrm{C}_{\text {enf }}$	CENF	Distance of center of aerodynamic heave drag area from CG
$\mathrm{C}_{\text {gap }}$	CGAP	Discharge coefficient of clearance gap
$C_{\text {pa }}$	CPA	Discharge coefficient of plenum-toatmosphere orifice
C_{pc}	C PC	Discharge coefficient of plenum-tocushion orifice
C_{pt}	CPT	Discharge coefficient of plenum-totrunk orifice
$\mathrm{C}_{\text {ta }}$	CTA	Discharge coefficient of trunk-toatmosphere orifice
$\mathrm{C}_{\text {tc }}$	CTC	Discharge coefficient of trunk-tocushion orifice
d	D	Distance between trunk attachment points
-	DECCL	Braking deceleration
del_{x}	DELX	Width of straight trunk segment (along aircraft axis)
-	DER(I)	Derivatives of state variables

Program Symbol - DPHI

-	DPHII
-	DTIME
-	DVCH
-	DVTK
-	DY(I)
Forcn	FORCD
	FORCN
-	FORCNS(I)

Forct FORCT

GG
h_{y}
-
-
-
-

FTIME
GEC
Variable Name

DPHII
DTIME
DVCH
DVTK
DY(I)

FORCNS(I)

GG

HP
HY

ICASE

IC LN

ICON

ICREST

Explanation

Pitch (angular) velocity
Initial pitch velocity
Time step dt
Time derivative of cushion volume
Time derivative of trunk volume
Derivatives of state variables
Aerodynamic drag force
Total vertical pressure force transmitted to aircraft

Static values of FORCN
Trunk damping force
Simulation time limit
Ground effect coefficient
Vertical distance of CG from center of cushion

Theoretical fan power
Equilibrium height of trunk cross section

Element number of iteration closest to the given gap area. ICASE $=0$ if configuration infeasible.

Used to suppress error message of CLRNCE during iteration of FLOW 1

Controls storage of static characteristic values in FLOWl.

ICREST $=2$ if configuration load and position within tolerance to aircraft weight and CG position. ICREST $=1$ otherwise

Symbol	Program Variable Name	Explanation
-	ID	ID = 0 after first entry in ground effect region. $I D=1$, cushion out of ground effect (initially)
-	IDID	IDID $=0$ if any configuration of iteration 1 in FLOWl infeasible. IDID = 1 otherwise
-	IDIF	Same as ICASE
-	IFAN	IFAN $=0$ for unstalled fan operation IFAN = 1 for stalled fan operation
-	IIT	Element number in static characteristic
Inert	INERT	Pitch moment of inertia of aircraft about CG
-	IODIN	Indicator of number of passes through iteration 1 of FLOW 1
-	IPCT	IPCT $=0$ if $\mathrm{PCH}>\mathrm{PTK}$ IPCT = 1 if $\mathrm{PCH} \leqslant \mathrm{PTK}$
-	IPHI	Y element number of two dimensional array of iteration 1 grid in FLOWI
-	IPN	Indicator of number of passes through iteration 2 of FLOW 1
-	IPP	IPP $=0$ for combined trunk, plenum dynamics, IPP $=1$ separate trunk, plenum dynamics
-	IPREST	IPREST $=2$ if actual gap area and iterated gap area within tolerance IPREST = 1 if parameters not within tolerance
-	1Q	Used to effect gradual change in cushion flow model after ground effect zone entry
-	IRS T	Counter used to prevent endless iteration in FLOWl
-	IS	IS $=$ IXCG of the best iteration grid point

Program
Symbol

-	ISAVE
-	ISHAPE
-	IYCG
-	JS
ℓ	L
ℓ_{1}	L1
l_{2}	L2
ℓ_{p}	LP
L_{s}	LS
M	M
M_{a}	MASS
-	MM
N	N
N_{h}	NH
-	NQ
N_{r}	NR
$\mathrm{P}_{\text {at }}$	PAT
$\mathrm{P}_{\text {atfn }}$	PATFN
$\mathrm{P}_{\text {ch }}$	PCH

Explanation

Same as ICASE
ISHAPE $=0$ if trunk inflation impossible ISHAPE $=1$ if trunk inflation possible

X element number of two dimensional array of iteration 1 grid in FLOWl

JS = IPHI of the best iteration grid point

Peripheral trunk length
Trunk length, outer attachment to horizontal tangent

Trunk length, inner attachment to horizontal tangent

Peripheral distance from inner trunk attachment to first row of orifices

Straight section length of cushion
Number of straight trunk segments in one quarter of trunk periphery

Mass supported by ACLS (slugs)
Number of steps before printing
Number of curved trunk segments in one quarter of trunk periphery

Number of trunk orifices per row
Determines number of steps in which gap model change takes place

Number of rows of trunk orifices
Atmospheric pressure, absolute
Fan inlet pressure, gage
Cushion pressure, gage

Symbol	Program Variable Name	Explanation
-	PCHS(I)	Static values of PCH , gage
-	PEN(J)	Iteration value of PATFN
$\mathrm{Per}_{\text {ch }}$	PERCH	Determines air gap seal imperfection
Per ${ }_{\text {tk }}$	PERTK	Factor that determines flow area of trunk orifices in ground contact
$\mathrm{P}_{\text {fan }}$	PFAN	Fan pressure rise
-	PFANS(J)	Iterative values of PFAN
-	PHIDELT	Increment in pitch angle
-	PHII	Initial value of pitch angle
-	PHIS(I)	Static values of pitch angle
-	PHISTRT	Initial value of pitch angle in iteration 1 of FLOWl
-	PHISTOP	Final value of pitch angle in iteration 1 of FLOWl
-	PINC	Increment in PFAN after first feasible configuration
-	PINC 1	Increment in PFAN before first feasible configuration
$P_{\text {plm }}$	PPLM	Plenum pressure, gage
-	PPLMS(I)	Static values of PPLM, gage
-	PSTART	Starting value of PFAN for iteration
-	PSTOP	Last value of PFAN in iteration
$\mathrm{P}_{\text {tk }}$	PTK	Trunk pressure, gage
-	PTKS(I)	Static values of PTK, gage
-	PTOL	Tolerance for pressure and force iteration
$Q_{\text {chat }}$	QCHAT	Cushion-to-atmosphere flow (cfs)

Symbol	Program Variable Name	Explanation
$Q_{\text {fan }}$	QFAN	Fan flow (cfs)
-	QFANS(I)	Static values of QFAN
$Q_{\text {fnpl }}$	QFNPL	Fan-to-plenum flow (cfs)
-	QP1-QP5	Stall, recovery and other points on fan characteristic
$Q_{\text {plat }}$	QPLAT	Bleed flow (cfs)
Q plch	QPLCH	Plenum-to-cushion flow (cfs)
$Q_{\text {pltk }}$	QPLTK	Plenum-to-trunk flow (cfs)
$Q_{\text {tkat }}$	QTKAT	Trunk-to-atmosphere flow (cfs)
$Q_{\text {tkch }}$	QTKCH	Trunk-to-cushion flow (cfs)
-	RTOL	Tolerance for R_{2} iteration
R_{1}	R1	Outer radius of curvature of trunk
R_{2}	R2	Inner radius of curvature of trunk
S	S	Peripheral length of cushion
-	SC	Stall margin
$S_{\text {h }}$	SH	Trunk orifice row spacing
-	SINKRT	Aircraft velocity (positive upward)
-	SINPH2	$\operatorname{Sin} \varphi_{2}$
-	SINPHR	$\mathrm{R}_{2} \operatorname{Sin} \phi_{2}$
T_{cp}	-	Cushion pressure torque component
T_{df}	-	Torque due to drag force
-	TEMPAT	Ambient temperature
t	TIME	Time
T_{tp}	-	Trunk pressure torque component

Program

Symbol	Variable Name	Explanation
Torf	TORF	Trunk-ground contact friction torque
Torn	TORN	Pressure torque
-	TORQ	$=$ TORN + TORF
Torqt	TORQT	Trunk damping torque
V_{ch}	VCH	Total cushion volume
$V_{\text {chd }}$	VCHD	Cushion dead volume
$\mathrm{V}_{\mathbf{c h i}}{ }^{\text {(}}$)	$\mathrm{VCHI}(\mathrm{I})$	I value of cushion volume of ith segment
$\mathrm{V}_{\mathbf{c h r}}(\mathrm{i})$	VCHR(I)	R value of cushion volume of ith segment
-	VCHS	VCH at time t-dt
-	VELX	Forward velocity of the aircraft
-	VELXI	Initial forward velocity
$\mathrm{V}_{\mathrm{plm}}$	VPLM	Plenum volume
V_{tk}	VTK	Trunk volume
$\mathrm{V}_{\text {tki }}(\mathrm{i})$	VTKI(I)	I value of trunk volume of ith segment
$\mathrm{V}_{\mathbf{t k r}}{ }^{\text {(i) }}$	VTKR(I)	R value of trunk volume of ith segment
- .	VTKS	VTK at time t-dt
X	X	Variable used in trunk area calculations
$\mathrm{X}_{1}-\mathrm{X}_{9}$	X1-X9	X-coordinates of centroids of trunk cross sectional area components
X_{12}	X12	X coordinate of trunk area components (A1-A2)
X_{cc}	XCC	X-coordinate of center of cushion (CC)
X_{cg}	XCG	X-coordinate of CG

Program
Symbol Variable Name

XCGI
$X_{c h}{ }^{(i)}$
$X_{c r}$
$X_{c x}{ }^{(i)}$
\mathbf{X}_{e}
$X_{e r}$
$X_{h}{ }^{(i)}$
$X_{t k}{ }^{(i)}$
-
XTOL
Y(I)
$\mathbf{Y}(1)$
Y(2)
Y(3)
$\mathbf{Y}(4)$
$\mathbf{Y}(5)$
$\mathbf{Y}(6)$
$\mathbf{Y}(7)$
YCC

YCG
YCGDELT

Explanation

Initial XCG
Distance of center of cushion pressure of ith segment from CC

X-coordinate of trunk area components (A6-A7)

Distance of center of ith segment from CC

X-coordinate of centroid of total trunk cross section area

X-coordinate of centroid of area $\mathbf{A}_{\text {tkr }}{ }^{(i)}$

X-coordinate of center of ith segment

Distance of center of trunk pressure of ith segment from CC

Tolerance for iteration 1 of FLOWl
State variables (see below)
Plenum pressure, gage
Cushion pressure, gage
Trunk pressure, gage
Vertical aircraft velocity
Vertical aircraft displacement
Pitch (angular) velocity
Pitch angle
Y-coordinate of center of cushion (CG)

Y-coordinate of $C G$
Increment in YCG

YCGI
YCGS(I)
YCGSTOP

YCGSTRT

YDIF
$Y_{g}(i)$
$Y_{g h}$
$Y_{h}(i)$
YGH(I)

YH(I)

ZCC(I, J)

ZWT(I, J)
$\alpha_{0}-\alpha_{4}$
β
$\beta_{0}{ }^{-\beta_{4}}$
B0-B4
δ (i)

K CKK
\varnothing
PHI
PHIl

PHI2

PHI3

Initial value of YCG
Static values of YCG
Final value of YCG in iteration 1 of FLOWl

Initial value of YCG in iteration 1 of FLOW 1
$=\mathrm{ADIF} / \mathrm{S}$
Ground elevation corresponding to ith segment

Hard surface clearance for ith segment

Y-coordinate of center of ith segment

Value of CC for point (I, J) in iteration 1 of FLOW1

Value of FORCN for point (I, J) in iteration 1 of FLOW 1

Polynomial coefficients of fan curve
Angle subtended by curved segment of the trunk

Polynomial coefficients of fan curve
Angular position of ith curved segment

Polytropic expansion constant
Pitch angle. Positive anticlockwise
Angle subtended by outer trunk segment (atmosphere side)

Angle subtended by inner trunk segment (cushion side)

Angle subtended by cushion side of trunk deformation (Figure 6)

Program
Symbol
\oplus_{4}
PHI4
ρ
RHO
μ
U
ζ
ZETA

Explanation
Angle subtended by atmosphere side of trunk deformation (Figure 6)
Air density (slugs $/ \mathrm{ft}^{3}$)
Coefficient of friction between the trunk and the ground

Trunk damping ratio

C. 1 Introduction

The heave-pitch model incorporated in the program is divided into two parts - the static relationships and the dynamic model.

The static relationships evaluate the geometric parameters, pressures and flows for the ACLS in equilibrium. They provide static design data, and also determine the initial conditions for the dynamic simulation.

The dynamic model predicts the time histories of ACLS pressures and flows and aircraft motion during approach, touchdown and taxi.
C. 2 The Static Model

The static relations can be divided into two categories:
(a) Geometric relations, summarized in C.2.1 and C.2.2.
(b) Pressure-flow-force-torque relations, summarized in C.2.3.
C. 2. 1 Trunk Crossectional Shape

From trunk geometry (Figure 6),

$$
\begin{align*}
& R_{1}=\ell_{1} \tag{1}\\
& R_{2} \varphi_{2}=\ell_{2} \tag{2}\\
& \ell_{1}+\ell_{2}=\ell \tag{3}
\end{align*}
$$

$\operatorname{Cos} \varphi_{2}=\frac{R_{2}-h y}{R_{2}}$

$$
\begin{align*}
& \mathrm{R}_{1} \operatorname{Cos}\left(\varphi_{1}-90^{\circ}\right)+\mathrm{R}_{2} \operatorname{Sin} \varphi_{2}=\mathrm{a} \tag{5}\\
& \mathrm{R}_{1} \operatorname{Sin}\left(\varphi_{1}-90^{\circ}\right)-\left(\mathrm{h}_{\mathrm{y}}-\mathrm{R}_{1}\right)=\mathrm{b} \tag{6}
\end{align*}
$$

The six unknown trunk configuration parameters ℓ_{1}, l_{2}, $R_{1}, R_{2}, \varphi_{1}$ and ϕ_{2} can be obtained by solving Equations (1) through (6) simultaneously, in terms of the known trunk parameters a, b, h_{y} and ℓ

C.2.2 Segmented Trunk Analysis

The orifice areas and cushion and trunk volumes, for a particular trunk orientation, are calculated as follows:

The trunk is divided into a number of segments. Then for a given trunk orientation, areas and volumes are calculated independently for each segment. The areas and volumes are divided into two components - the i component and the r component. The i values are calculated assuming that the trunk segment under consideration is out of ground contact. The r values represent the changes of the segment areas and volumes due to trunk-ground contact. The segment areas and volumes are found by subtracting the respective r values from the i values. The total areas and volumes are determined by combining the areas and volumes for each segment. For example

$$
\mathrm{v}_{\mathrm{tk}}=\sum_{\substack{\text { each } \\ \text { segment }}}\left(\mathrm{v}_{\mathrm{tki}}(\mathrm{i})-\mathrm{v}_{\mathrm{tkr}}(\mathrm{i})\right)
$$

where
$\mathrm{V}_{\mathrm{tk}}=$ total trunk volume
$V_{t k i}(i)=i$ value of trunk volume for ith segment
$V_{t k r}(i)=r$ value of trunk volume for ith segment
$\left(V_{t k r}(i)=0\right.$ if ith segment is not in ground contact.)

The trunk is symmetric about axes AA and BB (Fig. 2). Since roll motion is not considered and the ground profile is assumed to be two dimensional, only the right half of the trunk needs to be analyzed. The results of the left half will be similar. The right side of the trunk can be divided into four sections; two curved sections, each subtending 90° at the center of curvature and two straight sections, on each side of axis AA. The curved sections are divided into N segments each, and the straight sections are divided into M segments each. Thus the complete trunk is divided into $4(N+M)$ segments. (See Figure 2.)

The following assumption is made in deriving the areas and volumes for each segment:

The ground under any particular segment is considered parallel to the hard surface, and at an elevation corresponding to the ground profile at the segment center projection (as shown in Figure 3). This assumption represents the ground surface and the hard structure of the cushion by a series of short, parallel sections which, when chosen sufficiently small, closely approximate the actual ground profile and hard surface orientation.

In order to find the elevation of the segment center and the ground, the following five quantities are required.
(a) The coordinates of the $C G ; Y_{c g}, X_{c g}$
(b) The pitch angle, \varnothing
(c) The position of the CG with respect to the cushion center.
(d) The distance of the segment center from the cushion center, $X_{c x}(i) ; i=1,2(M+N)$
(e) The ground profile, $Y_{g}(i)$ as a function of $X_{h}(i)$.
C. 2.2.1 Hard Surface Clearance

Figure 3 shows the various parameters involved in calculation of the hard surface clearance for each segment.

For a given trunk orientation, $X_{c g}, Y_{\mathbf{c g}}$ and \varnothing are known. From Figure 3,

$$
\begin{align*}
& x_{c c}=X_{c g}+G G \operatorname{Sin} \phi-C C \operatorname{Cos} \phi \tag{7}\\
& X_{c c}=Y_{c g}-G G \operatorname{Cos} \phi-C C \operatorname{Sin} \phi \tag{8}
\end{align*}
$$

From Figure 2

$$
\begin{gather*}
x_{c x}(i)=-\left[\frac{L_{s}}{2}+\left(\frac{d}{2}+R_{2} \operatorname{Sin} \varphi_{2}\right) \operatorname{Cos} \delta(i)\right] \\
 \tag{9}\\
\quad \text { for } 1 \leq i \leq N
\end{gather*}
$$

where

$$
\begin{equation*}
\delta(i)=(i-1) \beta+\frac{\beta}{2} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\frac{90^{\circ}}{N} \tag{11}
\end{equation*}
$$

$$
\begin{gather*}
x_{c x}(i)=- \tag{12}\\
\text { for } N<i \leq M+N
\end{gather*}
$$

where

$$
\begin{align*}
\operatorname{del}_{x}= & L_{s} /(2 M) \tag{13}\\
X_{c x}(i)= & (i-N-M-1) \operatorname{del}_{x}+\operatorname{del}_{x} / 2 \tag{14}\\
& \text { for } M+N<i \leq N+2 M
\end{align*}
$$

and finally

$$
\begin{gather*}
x_{c x}(i)=\frac{L_{B}}{2}+\left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}\right) \operatorname{Sin} \delta(i-N-2 M) \tag{15}\\
\text { for } N+2 M<i \leq 2 N+2 M
\end{gather*}
$$

and δ (i) is given by Eq. (10).

Knowing $X_{c c}, Y_{c c}$ and $X_{c x}(i), X_{h}(i)$ and $Y_{h}(i)$
can be calculated as follows.

$$
\begin{array}{r}
X_{h}(i)=X_{c c}+X_{c x}(i) \cos \phi \\
Y_{h}(i)=Y_{c c}+X_{c x}(i) \sin \phi \tag{17}\\
i=1,2 M+2 N
\end{array}
$$

Since the ground profile is available in the
following form,

$$
\begin{equation*}
Y_{g}=f\left(X_{g}\right) \tag{18}
\end{equation*}
$$

substitution of the coordinates gives

$$
\begin{gather*}
Y_{g}(i)=f\left(X_{h}(i)+Y_{h}(i) \tan \varphi\right) \tag{19}\\
i=1,2 M+2 N
\end{gather*}
$$

Finally, the hard surface clearance for the
ith segment is:

$$
\begin{gathered}
Y_{g h}(i)=Y_{h}(i) / \operatorname{Cos} \phi-Y_{g}(i) \operatorname{Cos} \phi \\
\\
i=1,2 M+2 N \\
\text { C.2.2.2 } \quad \text { Areas and Volumes }
\end{gathered}
$$

C.2.2.2.1 Calculation of I Values

As explained in Section C. 2. 2, i values of areas and volumes for a segment are calculated assuming that the segment is out of ground contact. The trunk sectors are shown in Figure 6a. From geometry, the trunk cross sectional area $A_{\text {tki }}{ }^{(i)}$ is given by

$$
\begin{equation*}
A_{t k i}(i)=A_{1}-A_{2}+A_{3}-A_{4}+A_{5} \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{1}=\frac{\phi_{2}}{2} R_{2}^{2} \\
& A_{2}=\frac{\left(R_{2}-h_{y}\right)}{2} R_{2} \operatorname{Sin} \varphi_{2} \\
& A_{3}=\frac{\phi_{1} R_{1}^{2}}{2} \\
& A_{4}=\frac{X b}{2} \\
& A_{5}=\frac{\left(a-R_{2} \operatorname{Sin} \varphi_{2}-X\right)\left(h_{y}-R_{1}\right)}{2} \\
& \text { and } x=\frac{b\left(a-R_{2} \operatorname{Sin} \varphi_{2}\right)}{b+h_{y}-R_{1}}
\end{aligned}
$$

position of the segment.

$$
\begin{align*}
V_{t k i}(i)= & \operatorname{del}_{x} A_{t k i}(i) \tag{22}\\
& \text { for } N<i \leq N+2 M
\end{align*}
$$

and

$$
\begin{gather*}
\mathrm{V}_{\mathrm{tki}}(\mathrm{i})=\beta\left(\frac{\mathrm{d}}{2}+\mathrm{X}_{\mathrm{e}}\right) \mathrm{A}_{\mathrm{tki}}(\mathrm{i}) \tag{23}\\
\text { for } \mathrm{i} \leq \mathrm{N} \\
\text { or } \mathrm{i}>\mathrm{N}+2 \mathrm{M}
\end{gather*}
$$

where X_{e} is the horizontal distance of the centroid of the area $A_{\text {twi }}$ from the inner trunk attachment point (X-coordinate of centroid). X_{e} is calculated as follows

$$
x_{e}=\frac{A_{1} x_{1}-A_{2} X_{2}+A_{3} x_{3}-A_{4} x_{4}+A_{5} X_{5}}{A_{t k i}(i)}
$$

where X_{1}, X_{2}, etc., are the X coordinates of the centroids of the areas

$$
\begin{aligned}
& \mathrm{X}_{1}=\mathrm{R}_{2} \operatorname{Sin} \phi_{2}-4 \operatorname{Sin}^{2}\left(\varphi_{2} / 2\right) \mathrm{R}_{2} / 3 \varphi_{2} \\
& \mathrm{X}_{2}=0.6667 \mathrm{R}_{2} \operatorname{Sin} \phi_{2} \\
& \mathrm{X}_{3}=\mathrm{R}_{2} \operatorname{Sin} \varphi_{2}+4 \operatorname{Sin}^{2}\left(\phi_{1} / 2\right) \mathrm{R}_{1} / 3 \phi_{1} \\
& \mathrm{X}_{4}=\mathrm{a}-0.333 \mathrm{X} \\
& \mathrm{X}_{5}=\mathrm{R}_{2} \operatorname{Sin} \phi_{2}+0.333\left(\mathrm{a}-\mathrm{R}_{2} \operatorname{Sin} \phi_{2}-\mathrm{X}\right)
\end{aligned}
$$

given by

$$
\begin{align*}
A_{c h i}(i)= & \left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}\right) d e l_{x} \tag{24}\\
& \text { for } N<i \leq N+2 M \\
A_{c h i}(i)= & \left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}\right)^{2} \frac{\beta}{2} \tag{25}\\
& \text { for } i \leq N \\
& \text { or } i>N+2 M
\end{align*}
$$

To calculate the trunk-to-cushion
flow area, it is necessary to know the number of trunk holes inside the cushion. From Figures 1 and 6, the number of rows of holes communicating with the cushion is given by the integer value of $\left(l_{2}-l_{p} / S_{h}\right)+1$. The trunk-to-cushion flow area is thus given by

$$
\begin{align*}
& A_{\text {tkchi }}(i)= \tag{26}\\
& \text { integer }\left[\frac{\ell_{2}-\ell_{p}}{S_{h}}+1\right] N_{h} A_{h} \cdot \frac{\text { del }_{x}}{S} \\
& \text { for } N<i \leq N+2 M \\
& \text { where } \quad \begin{aligned}
S & =\text { cushion periphery } \\
& =2 L_{s}+2 \pi\left(\frac{d}{2}+R_{2} \sin \phi_{2}\right)
\end{aligned} \tag{27}
\end{align*}
$$

and

$$
\begin{gather*}
A_{\text {tkchi }}(i)=\text { integer }\left[\frac{\ell_{2}-\ell_{p}}{S_{h}}+1\right] N_{h} A_{h} \\
\times \frac{\beta\left(\frac{d}{2}+R_{2} \operatorname{Sin} \varphi_{2}\right)}{S} \tag{28}
\end{gather*}
$$

$$
\begin{array}{ll}
\text { for } i \leq N \\
\text { or } i & >N+2 M
\end{array}
$$

area is given by

$$
\begin{gather*}
A_{t k a t i}(i)=N_{r} A_{h} N_{h} \cdot \frac{d e l}{S}-A_{t k c h i}{ }^{(i)} \tag{29}\\
\text { for } N<i \leq N+2 M
\end{gather*}
$$

and

$$
\begin{align*}
A_{t k a t i}(i)= & N_{r} A_{h} N_{h} \cdot \frac{\beta\left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}\right)}{S}-A_{t k c h i}(i) \tag{30}\\
& \text { for } i \leq N \\
& \text { or } i>N+2 M
\end{align*}
$$

The cushion-to-atmosphere flow
area is given by

$$
\begin{align*}
A_{\text {gapi }}(i)= & \left(Y_{g h}(i)-h_{y}\right) d_{x} \tag{31}\\
& \text { for } N<i \leq N+2 M
\end{align*}
$$

where $Y_{g h}{ }^{(i)}$ is calculated from Equation (20), and

$$
\begin{align*}
A_{\text {gapi }}(i)= & \left(Y_{g h}(i)-h_{y}\right) \beta\left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}\right) \tag{32}\\
& \text { for } i \leq N \\
& \text { or } i>N+2 M
\end{align*}
$$

Finally, the cushion volume is
given by

$$
\begin{align*}
V_{c h i}(i)= & Y_{g h}(i)\left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}\right) d e l_{x}-\left(A_{1}-A_{2}\right) d e l_{x} \tag{33}\\
& \text { for } N<i \leq N+2 M
\end{align*}
$$85

and

$$
\begin{align*}
\mathrm{V}_{\mathrm{chi}}(\mathrm{i})= & Y_{\mathrm{gh}}(\mathrm{i}) \frac{\beta}{2}\left(\frac{\mathrm{~d}}{2}+\mathrm{R}_{2} \operatorname{Sin} \phi_{2}\right)^{2} \\
& -\beta\left(\frac{\mathrm{d}}{2}+\mathrm{X}_{12}\right)\left(\mathrm{A}_{1}-\mathrm{A}_{2}\right) \tag{34}
\end{align*}
$$

where

$$
X_{12}=\frac{X_{1} A_{1}-X_{2} A_{2}}{A_{1}-A_{2}}
$$

$$
\text { for } \mathrm{i} \leq \mathrm{N}
$$

$$
\text { or } \quad \text { i }>N+2 M .
$$

C.2.2.2.2 Calculation of R Values

The r values represent the changes
in areas and volumes due to trunk-ground contact. Ground contact occurs when $Y_{g h}(i)<h_{y}$ (see Figure 3). With ground contact, the r values are calculated as follows. The trunk cross sectional area $A_{\text {tkr }}(i)$ is given by

$$
\begin{equation*}
A_{t k r}(i)=A_{6}-A_{7}+A_{8}-A_{9} \tag{35}
\end{equation*}
$$

where A_{6}, A_{7}, etc., are the areas of the sectors shown in Figure 6b.

$$
\begin{aligned}
& A_{6}=\frac{R_{2}^{2}}{2} \phi_{3} \\
& A_{7}=\frac{\left(R_{2}-h_{y}+Y_{g h}(i)\right)}{2} R_{2} \operatorname{Sin} \varphi_{3} \\
& A_{8}=\frac{R_{1}^{2} \phi_{4}}{2} \\
& A_{9}=\frac{\left(R_{1}-h_{y}+Y_{g h}(i)\right)}{2} R_{1} \operatorname{Sin} \varphi_{4}
\end{aligned}
$$

$$
\varphi_{3}=\operatorname{Cos}^{-1} \frac{R_{2}-\left(h_{y}-Y_{g h}(i)\right)}{R_{2}}
$$

and

$$
\varphi_{4}=\operatorname{Cos}^{-1} \frac{R_{1}-\left(h_{y}-Y_{g h}(i)\right)}{R_{1}}
$$

The r value of the trunk volume
$V_{t k r}(i)$ is calculated as follows

$$
\begin{align*}
V_{t k r}(i)= & A_{t k r}(i) d e l \tag{36}\\
& \text { for } N<i \leq N+2 M \\
V_{t k r}(i)= & \beta\left(\frac{d}{2}+X_{e r}\right) A_{t k r}(i) \\
& \text { for } i \leq N \\
& \text { or } i>N+2 M
\end{align*}
$$

where $X_{e r}$ is the X-coordinate of the centroid of area $A_{t k r}(i)$

$$
x_{e r}=\frac{A_{t} x_{t}-A_{r} x_{r}+A_{0} x_{0}-A_{n} x_{n}}{A_{t k r}}
$$

and X_{6}, X_{7}, etc., are X coordinates of the areas A_{6}, A_{7}, etc., respeclively

$$
\begin{aligned}
& x_{6}=R_{2} \operatorname{Sin} \varphi_{2}-4 \operatorname{Sin}^{2}\left(\varphi_{3} / 2\right) R_{2} / 3 \varphi_{3} \\
& x_{7}=R_{2} \operatorname{Sin} \varphi_{2}-0.333 R_{2} \operatorname{Sin} \varphi_{3} \\
& x_{8}=R_{2} \operatorname{Sin} \varphi_{2}+4 \operatorname{Sin}^{2}\left(\varphi_{4} / 2\right) R_{1} / 3 \varphi_{4} \\
& x_{9}=R_{2} \operatorname{Sin} \varphi_{2}+0.333 R_{1} \operatorname{Sin} \varphi_{4}
\end{aligned}
$$

given by

$$
\begin{align*}
A_{c h r}(i)= & \operatorname{del}_{x} R_{2} \operatorname{Sin} \varphi_{3} \tag{37}\\
& \text { for } N<i \leq N+2 M
\end{align*}
$$

and

$$
\begin{align*}
A_{c h r}(i)= & \frac{\beta}{2}\left(\left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}\right)^{2}\right. \\
& \left.-\left(\frac{d}{2}+R_{2} \operatorname{Sin} \varphi_{2}-R_{2} \operatorname{Sin} \varphi_{3}\right)^{2}\right) \tag{38}\\
& \text { for } i \leq N \\
& \text { or } i>N+2 M
\end{align*}
$$

The number of trunk orifice rows communicating with the cushion is given by the integer value of

$$
\left[\frac{\ell_{2}-\ell_{p}-\phi_{3} R_{2}}{S_{h}}\right]+1
$$

The r value of the area of the trunk orifices communicating with the cushion is given by

$$
\begin{gather*}
A_{t k c h r}(i)=A_{t k c h i}(i)-\text { integer }\left[\frac{\ell_{2}-l_{p}-\phi_{3} R_{2}}{S_{h}}+1\right] N_{h} A_{h} \\
\cdot \frac{d e l}{S} \tag{39}\\
\text { for } N<i \leq N+2 M
\end{gather*}
$$

and

$$
\begin{gather*}
A_{t k c h r}(i)=A_{t k c h i}(i)-\text { integer }\left[\frac{\ell_{2}-\ell_{p}-\phi_{3} R_{2}}{S_{h}}+1\right] N_{h} A_{h} \\
\left.\frac{\beta\left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi\right.}{2}\right) \tag{40}\\
S
\end{gather*}
$$

$$
\text { for } \begin{aligned}
\mathrm{i} & \leq N \\
\mathrm{i} & >N+2 M
\end{aligned}
$$

Similarly, the number of orifice rows communicating with the atmosphere is given by the integer value of

$$
\left[\frac{\ell_{1}-\left(\ell-\left(\ell_{p}+\left(N_{r}-1\right) S_{h}\right)\right)-\phi_{4} R_{1}}{S_{h}}\right]+1
$$

The r value of the trunk-to-atmosphere area is thus

$$
\begin{gather*}
A_{\text {tkatr }}(i)=A_{t k a t i}(i)-\text { integer }\left[\frac{\ell_{1}-\left(\ell-\left(\ell_{p}+\left(N_{r}-1\right) S_{h}\right)\right)-\phi_{4} R_{1}}{S_{h}}+1\right] N_{h} A_{h} \\
\cdot \frac{\text { del }_{x}}{S} \tag{41}\\
\text { for } N<i \leq N+2 M
\end{gather*}
$$

and

$$
\begin{gather*}
A_{\text {tkatr }}(i)=A_{\text {tkati }}(i)-\text { integer }\left[\frac{\ell_{1}-\left(\ell-\left(\ell_{p}+\left(N_{r}-1\right) S_{h}\right)\right)-\phi_{4} R_{1}}{S_{h}}+1\right] N_{h} A_{h} \\
\cdot \frac{\beta\left(\frac{d}{2}+R_{2} S_{i n} \phi_{2}\right)}{S} \tag{42}\\
\text { for } i \leq N \\
\text { or } i>N+2 M
\end{gather*}
$$

Equations (39) through (42) give the r values that correspond to a perfect seal during ground contact; i. e., when the trunk orifices and clearance gap are completely blocked. However, due to ground irregularities, trunk ribs and imperfections, brake pads, etc., the seal will not be perfect and the actual r values will thus be smaller than those found from Equations (39) through (42). These reduced r values are related to the perfect seal values through blockage factors as follows.

$$
\begin{align*}
& A_{t k c h r}(i)=\left.A_{t k c h r}(i)\right|_{\text {perfect seal }} \times \operatorname{Per}_{t k} \tag{43}\\
& A_{t k a t r}(i)=\left.A_{t k a t r}(i)\right|_{\text {perfect seal }} \times \operatorname{Per}_{t k}
\end{align*}
$$

where Per the is the blockage factor (less than unity) that depends on the trunk orifice sealing characteristic during ground contact.

The cushion clearance gap area
is given by

$$
\begin{equation*}
A_{\text {gapr }}(i)=A_{\text {gapi }}(i) \tag{45}
\end{equation*}
$$

The cushion volume r value is
given by

$$
\begin{aligned}
V_{c h r}(i)= & -\operatorname{del}_{x}\left(A_{6}-A_{7}\right) \\
& \text { for } N<i \leq N+2 M \\
V_{c h r}(i)= & -\beta\left(\frac{d}{2}+X_{c r}\right)\left(A_{6}-A_{7}\right) \\
& \text { for } i \leq N \\
& i>N+2 M
\end{aligned}
$$

where

$$
x_{c r}=\frac{A_{6} x_{6}-A_{7} X_{7}}{A_{6}-A_{7}}
$$

Finally, the trunk-ground contact area is given by

$$
\begin{gather*}
A_{t k c n}(i)=\quad\left(R_{2} \operatorname{Sin} \phi_{3}+R_{1} \operatorname{Sin} \phi_{4}\right) \mathrm{del}_{x} \tag{48}\\
\text { for } N<i \leq N+2 M \\
A_{t k c n}(i)=\frac{\beta}{2}\left(\left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}+R_{1} \operatorname{Sin} \phi_{4}\right)^{2}\right. \\
\left.-\left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}-R_{2} \operatorname{Sin} \phi_{3}\right)^{2}\right) \tag{49}\\
\text { for } i \leq N \\
\text { or } \quad i>N+2 M
\end{gather*}
$$

The values of $V_{t k}, A_{c h}, A_{t k c h}$,
$A_{\text {tkat' }} V_{c h}$ and $A_{\text {gap }}$ for the full trunk and cushion are obtained by subtracting the r values from the i values for each segment and summing them over all the segments.

$$
\begin{align*}
& v_{t k}=2 \sum_{i=1}^{2(N+M)}\left[v_{t k i}(i)-v_{t k r}(i)\right] \tag{50}\\
& A_{c h}=2 \sum_{i=1}^{2(N+M)}\left[A_{c h i}(i)-A_{c h r}(i)\right] \tag{51}\\
& A_{t k c h}=2 \sum_{i=1}^{2(N+M)}\left[A_{t k c h i}(i)-A_{t k c h r}(i)\right] \tag{52}
\end{align*}
$$

$$
\begin{align*}
& A_{t k a t}=2 \sum_{i=1}^{2(N+M)}\left[A_{t k a t i}(i)-A_{t k a t r}(i)\right] \tag{53}\\
& v_{c h}=2 \sum_{i=1}^{2(N+M)}\left[v_{c h i}(i)-v_{c h r}(i)\right]+v_{c h d} \tag{54}
\end{align*}
$$

where $V_{\text {chd }}$ is the dead (inactive) cushion volume and

$$
\begin{equation*}
A_{\text {gap }}=2 \sum_{i=1}^{2(N+M)}\left[A_{g a p i}(i)-A_{g a p r}(i)\right] \tag{55}
\end{equation*}
$$

The factor 2 in the above equations is included, because the expressions in brackets have been calculated for one-half of the (symmetrical) trunk. The r values are zero when ground contact does not occur, i. e., $Y_{g h}{ }^{(i)}>h_{y}$. Otherwise they are calculated from Equations (35) through (47).

Due to ground irregularities, trunk imperfections, brake pads, etc., the cushion seal during ground contact will not be perfect (i.e., $A_{g a p} \neq 0$). Therefore, a minimum value of $A_{g a p}$ is defined such that in ground contact, $A_{\text {gap }}=A_{l e a k} . A_{\text {leak }}$ is related to the equilibrium gap area through the cushion blockage factor, as shown below.

$$
\begin{equation*}
A_{\text {leak }}=\operatorname{Per}_{\text {ch }} A_{\text {gape }} \tag{56}
\end{equation*}
$$

where $A_{\text {gape }}$ is the equilibrium gap area and $P e r_{c h}$ is the cushion blockage factor.

C.2.2.3 Center of Pressure

The distances of the centers of pressure of each segment from the center of the cushion are required in order to estimate torques acting on the ACLS. The positions of the centers of pressure depend on whether the segment is in ground contact or not. 92

C.2.2.3.1 Segment Out of Ground Contact

Such a situation exists for the
ith segment when $Y_{g h}(i) \geq h_{y}$. Since it is assumed that the pressures inside the trunk and the cushion are uniform, the pressure centers of a segment will coincide with respective centroids of the projected area.

As can be seen from Figures 2 and 4, the center of pressure for the ith segment of the cushion, $X_{c h}(i)$ is

$$
\begin{aligned}
X_{c h}(i)= & -\frac{L_{s}}{2}-\frac{4}{3 \beta}\left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}\right) \\
& \cdot \operatorname{Cos}((i-1) \beta+\beta / 2) \operatorname{Sin}(\beta / 2) \\
& \text { for } i \leq N \\
X_{c h}(i)= & X_{c x^{(i)}} \\
& \text { for } N<i \leq N+2 M
\end{aligned}
$$

and

$$
\begin{align*}
X_{c h}(i)= & \frac{L_{0}}{2}+\frac{\frac{4}{3 \beta}}{}\left(\frac{i}{2}+R_{2} \operatorname{Sin} \phi_{2}\right) \\
& \cdot \operatorname{Sin}((i-N-2 M-1) \beta+\beta / 2) \operatorname{Sin}(\beta / 2) \tag{59}\\
& \text { for } i>N+2 M
\end{align*}
$$

C.2.2.3.2 Segment in Ground Contact

Figure 4 shows the parameters needed to calculate the distances of the center of the cushion pressure $X_{c h}{ }^{(i)}$ and the center of trunk pressure $X_{t k}(i)$ for the ith segment in ground contact. From geometry,

$$
\begin{gather*}
\text { for } \quad i \leq N, \\
X_{c h}(i)=-\frac{L_{s}}{2}-\frac{4}{3 \beta}\left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}-R_{2} \operatorname{Sin} \phi_{3}\right) \\
\operatorname{Cos}((i-1) \beta+\beta / 2) \operatorname{Sin}(\beta / 2) \tag{60}\\
X_{t k}(i)=-\frac{L_{s}}{2}-X X 2 \operatorname{Cos}((i-1) \beta+\beta / 2) \tag{61}
\end{gather*}
$$

where

$$
\mathrm{XX} 2=\frac{4}{3} \frac{\operatorname{Sin}(\beta / 2)}{\beta} \frac{\left(R \mathrm{R}^{3}-R R 1^{3}\right)}{\left(R R^{2}-R R 1^{2}\right)}
$$

$$
R R=\frac{\mathrm{d}}{2}+\mathrm{R}_{2} \operatorname{Sin} \phi 2+\mathrm{R}_{1} \operatorname{Sin} \phi 4
$$

and

$$
R R 1=\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}-R_{2} \operatorname{Sin} \phi_{3}
$$

For $\quad N<i \leq N+2 M$
$X_{c h}(i)=X_{c x}(i)$

$$
\begin{equation*}
X_{t k}(i)=X_{c x}(i) \tag{63}
\end{equation*}
$$

Finally, for $\mathrm{i}>\mathrm{N}+2 \mathrm{M}$

$$
\begin{array}{r}
X_{c h}(i)=\frac{L_{s}}{2}+\frac{4}{3 \beta}\left(\frac{d}{2}+R_{2} \operatorname{Sin} \phi_{2}-R_{2} \operatorname{Sin} \phi_{3}\right) \\
 \tag{64}\\
\operatorname{Sin}((i-N-2 M-1) \beta+\beta / 2) \operatorname{Sin}(\beta / 2)
\end{array}
$$

and

$$
\begin{equation*}
X_{t k}(i)=\frac{L_{s}}{2}+X X 2 \operatorname{Sin}((i-N-2 M-1) \beta+\beta / 2) \tag{65}
\end{equation*}
$$

where XX 2 is obtained from Eq. (61).

C.2.3 Pressure-Flow-Force-Torque Relations

The flow diagram of the cushion is shown in Figure C. 1. The flow through the upstream fan orifice is given by

$$
\begin{equation*}
Q_{\mathrm{fan}}=A_{\mathrm{atfn}} C_{\mathrm{af}} \sqrt{\frac{-2 P_{\mathrm{atfn}}}{\rho}} \tag{66}
\end{equation*}
$$

where
$Q_{\text {fan }}=$ volume flow through the fan
$A_{a t f n}=$ orifice area, atmosphere to fan inlet
$C_{a f}=$ fan inlet orifice discharge coefficient
$P_{\text {attn }}=$ fan entrance pressure (negative, gage)
$\rho=$ air density

The fan pressure rise, $P_{\text {fan }}$ is given by
$P_{f a n}=P_{p l m}-P_{a t f n}$
where

$$
P_{\text {plo }}=\text { plenum pressure (gage). }
$$

The fan flow is obtained from the fan characteristics, and is a function of the fan pressure rise.

$$
\begin{equation*}
Q_{f a n}=f\left(P_{f a n}\right) \tag{68}
\end{equation*}
$$

The remaining flows are found as follows.

$$
\begin{equation*}
Q_{\text {plat }}=A_{\text {plat }} C_{p a} \sqrt{\frac{2 P_{p l m}}{\rho}} \tag{69}
\end{equation*}
$$

Figure C. 1. Fluid Flow Through ACLS
where

$$
\begin{align*}
& Q_{\text {plat }}-\text { bleed flow rate } \\
& A_{\text {plat }}-\text { bleed area } \\
& C_{\text {pa }}-\text { bleed discharge coefficient } \\
& Q_{\text {fnpl }}=Q_{\text {fan }}-Q_{\text {plat }} \tag{70}
\end{align*}
$$

where

$$
\begin{equation*}
Q_{\text {fnpl }}=Q_{p l c h}+Q_{p l t k} \tag{71}
\end{equation*}
$$

where
$Q_{p l c h}=A_{p l c h} C_{p c} \sqrt{\frac{2\left(P_{p l m}-P_{c h}\right)}{\rho}}$
where

$$
\begin{equation*}
P_{\text {ch }}-\text { cushion pressure (gage) } \tag{72}
\end{equation*}
$$

Aplch - plenum-to-cushion orifice area
$Q_{p l t k}=A_{p l t k} C_{p t} \sqrt{\frac{2\left(P_{p l m}-P_{t k}\right)}{\rho}}$
where $P_{t k}-$ trunk pressure (gage)
Apltk - plenum-to-trunk orifice area

$$
\begin{equation*}
Q_{\text {pltk }}=Q_{\text {tech }}+Q_{\text {that }} \tag{74}
\end{equation*}
$$

where
$Q_{\text {tech }}$ - trunk-to-cushion flow rate
$Q_{\text {that }}$ - trunk-to-atmosphere flow rate
$Q_{\text {tkch }}=A_{t k c h} C_{t c} \sqrt{\frac{2\left(\mathrm{P}_{\mathrm{tk}}-\mathrm{P}_{\mathrm{ch}}\right)}{\rho}}$
$Q_{t k a t}=A_{t k a t} C_{t a} \sqrt{\frac{2 P_{t k}}{\rho}}$
$Q_{\text {chat }}=Q_{\text {plch }}+Q_{\text {tkch }}$
where
$Q_{\text {chat }}$ - cushion-to-atmosphere flow rate
$Q_{\text {chat }}=A_{\text {gap }} C_{\text {gap }} \sqrt{\frac{2 P_{\text {ch }}}{\rho}}$
The static (vertical) force developed by the cushion is determined from a force balance.

$$
\begin{equation*}
\text { Force }=\left(P_{c h} A_{c h}+P_{t k} A_{t k c n}\right) \operatorname{Cos\phi } \tag{79}
\end{equation*}
$$

where

$$
\begin{aligned}
& P_{c h}-\text { cushion pressure, gage } \\
& A_{c h}-\text { cushion area }=2 \sum_{i=1}^{2(M+N)}\left(A_{c h i}(i)-A_{c h r}(i)\right)
\end{aligned}
$$

$P_{t k}$ - trunk pressure, gage
$A_{t k c n}-$ trunk-ground contact area $=2 \sum_{i=1}^{2(M+N)} A_{t k c n}(i)$
ϕ - pitch angle

From Figure 4, Torn, the torque developed by the cushion and trunk pressure, is given by

$$
\begin{align*}
\text { Torn }= & \sum_{i=1}^{2(M+N)} 2 P_{c h}\left(A_{c h i}(i)-A_{c h r}(i)\right)\left(x_{c h}^{(i)}-C C\right) \\
& +2 P_{t k}\left(A_{t k c n}(i)\right)\left(X_{t k}(i)-C C\right) \tag{80}
\end{align*}
$$

where the i values of the areas, and the center of pressure distances are given by Equations (24), (25), (37), (38), (48), (49), and (57) through (65).

Under equilibrium conditions, the total cushion force equals the aircraft weight, and the torque is given by the product of the weight and the distance between the CG and the geometric center of the cushion. Under this equilibrium loading, the aircraft orients itself at a particular $X_{c g}, Y_{c g}$ and ϕ. If ground profile and $X_{c g}$ are known, variables $Y_{c g}$ and ϕ uniquely define the aircraft and ACLS position, and define the variables $A_{c h i}{ }^{(i)}$, $A_{c h r}{ }^{(i)}, A_{t k c n}{ }^{(i)}, \quad X_{c h}{ }^{(i)}$ and $X_{t k}(i)$. Thus,

$$
\begin{equation*}
A_{c h i}(i)=f_{l i}\left(Y_{c g}, \phi\right) \tag{81}
\end{equation*}
$$

$$
\begin{equation*}
A_{c h r}(i)=f_{2 i}\left(Y_{c g}, \phi\right) \tag{82}
\end{equation*}
$$

$A_{t k c n}(i)=f_{3 i}\left(Y_{c g}, \phi\right)$

$$
\begin{equation*}
X_{c h}(i)=f_{4 i}\left(Y_{c g}, \phi\right) \tag{84}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{t k}(i)=f_{5 i}\left(Y_{c g}, \phi\right) \tag{85}
\end{equation*}
$$

Thus, for the static solution, Equations (66) through (85) can be solved to determine the pressures, flows, areas, etc., $Q_{\text {fan }} Q_{\text {plat }}$ $Q_{\text {fnpl }}, Q_{\text {plch }}, Q_{\text {pltk }}, Q_{\text {that }}, Q_{\text {th ch, }}, Q_{\text {chat' }} P_{\text {attn }}, P_{\text {fan }}, P_{p l m}, P_{t k}, P_{c h}$, $Y_{c g}, \phi, A_{c h i}(i), A_{c h r}(i), A_{t k c n}(i), X_{c h}(i), X_{t k}(i)$.

The heave stiffness can be found from the slope of the load-deflection characteristic,

$$
\begin{equation*}
\text { Stif }_{\mathrm{ycg}}=-\frac{\Delta \text { Forcn }^{\Delta Y_{c g}}}{} \tag{86}
\end{equation*}
$$

where $\quad \Delta$ Forcn - change in normal force
$\Delta Y_{c g}$ - change in CG elevation
Similarly, the pitch stiffness is found from the torquerotation characteristic,

$$
\begin{equation*}
\text { Stif }_{\text {phi }}=-\frac{\Delta \text { Torn }}{\Delta \phi} \tag{87}
\end{equation*}
$$

where
Δ Torn - change in torque due to change in location of load with respect to CG
and
$\Delta \phi$ - change in pitch angle.
C. 3 The Dynamic Model

The dynamic behavior of the ACLS is determined from the simultaneous solution of the equations describing the body dynamics and fluid mechanics of the cushion.
C. 3. 1 Body Dynamics
C.3.1.1 Force Balance

During dynamic motion, the forces acting on the ACLS consist of:
(a) The cushion pressure force ($\mathrm{P}_{\mathrm{ch}} \mathrm{A}_{\mathrm{ch}}$) Cos申
(b) The trunk pressure force during trunkground contact ($P_{\text {tk }} A_{\text {tken }}$) Cos ϕ
(c) The aircraft weight ($\mathrm{M}_{\mathrm{a}} \mathrm{g}$)
(d) The aerodynamic drag ($1 / 2 C_{D} \cdot A_{p h} \cdot \rho v^{2}$), where C_{D} is the heave drag coefficient, $A_{p h}$ is the projected heave area and v is the heave velocity, $d Y_{c g} / d t$.
(e) The trunk damping force during trunkground contact, Forct, given by Forct $=2 \sum_{i=1}^{2(M+N)}$ Forct(i)
where

$$
\operatorname{Forct}(\mathrm{i})=\frac{\mathrm{B}_{\mathrm{z}}}{4(\mathrm{M}+\mathrm{N})}\left(\frac{\mathrm{d} Y_{c g}}{\mathrm{dt}}+\frac{\mathrm{d} \phi}{\mathrm{dt}}\left(\mathrm{X}_{\mathrm{cx}}(\mathrm{i})-\mathrm{CC}\right)\right)
$$

if segment is in ground contact.

$$
\begin{aligned}
\text { Forct }(\mathrm{i})=0, & \text { if segment is out of } \\
& \text { ground contact }
\end{aligned}
$$

The basic equation of motion is then found from
Newton's law as follows.

$$
\begin{align*}
M_{a} \frac{d v_{c g}^{2}}{d t^{2}}= & \left(P_{c h} A_{c h}+P_{t k} A_{t k c n}\right) \operatorname{Cos} \phi-M_{a} g \\
& -1 / 2 C_{D} A_{p h} \rho\left(\frac{d Y c g}{d t}\right)^{2}-\text { Forct } \tag{88}
\end{align*}
$$

C.3.1.2 Torque Balance

The torques acting about the CG of the aircraft consist of
(a) The cushion pressure torque

$$
T_{c p}=2 \sum_{i=1}^{2(M+N)} P_{c h}\left(A_{c h i}{ }^{(i)}-A_{c h r}(i)\right)\left(X_{c h}^{(i)-C C}\right)
$$

$$
\begin{aligned}
& T_{t p}=2 \sum_{i=1}^{(b)} P_{t k}^{2(M+N)}\left(A_{t k c n}(i)\right)\left(X_{t k}(i)-C C\right) \\
& \text { (c) The trunk pressure torque } \\
& \text { Torf }=-2 \sum_{i=1}^{2(M+N)} P_{t k}\left(A_{t k c n}(i)\right) \mu\left(Y_{g h}(i)+G G\right)
\end{aligned}
$$

where μ is the coefficient of friction between the trunk and the ground.
(d) The torque due to aerodynamic drag force

$$
T_{\mathrm{df}}=1 / 2 \mathrm{C}_{\mathrm{D}} \mathrm{~A}_{\mathrm{ph}} \rho\left(\frac{\mathrm{dY}}{\mathrm{cg}}\right)^{2} \mathrm{C}_{\mathrm{enf}}
$$

where $C_{e n f}$ is the horizontal distance of the center of the aerodynamic drag force from the CG.

$$
\text { Torqt }=2 \sum_{i=1}^{2(\mathrm{M}+N)} \text { The torque due to trunk damping, Torqt }
$$

where

$$
\left.\begin{array}{rl}
\text { Torgt }(\mathrm{i})= & \frac{\mathrm{B}_{\mathrm{z}}}{4(\mathrm{M}+\mathrm{N})}\left(\frac{\mathrm{dY}}{\mathrm{cg}} \mathrm{dt}+\frac{\mathrm{d} \phi}{\mathrm{dt}}\left(\mathrm{X}_{\mathrm{cx}}(\mathrm{i})-\mathrm{CC}\right)\right)\left(\mathrm{X}_{\mathrm{tk}}(\mathrm{i})-\mathrm{CC}\right) \\
& \text { if the segment is in ground contact } \\
= & 0 \text {, if the segment is not in ground contact } \\
\text { A torque balance about the CG then gives }
\end{array}\right\}
$$

where Inert is the pitch moment of inertia about the CG.

(a) Plenum

The fluid system consists of three interconnected chambers; plenum, trunk and cushion; fluid resistances and a fan. From the polytropic pressure-density relation,

$$
\begin{align*}
& \frac{\left(P_{\mathrm{plm}}+\mathrm{P}_{\mathrm{at}}\right)}{\rho_{\mathrm{plm}}^{\mathrm{K}}}=\text { constant } \tag{90}\\
& \text { Taking time derivatives, } \\
& \frac{\mathrm{dP}}{\mathrm{plm}} \\
& \mathrm{dt}
\end{align*}=\frac{\mathrm{K}\left(\mathrm{P}_{\mathrm{plm}}+P_{\mathrm{at}}\right)}{\rho_{\mathrm{plm}}} \frac{\mathrm{~d} \rho_{\mathrm{plm}}}{\mathrm{dt}} .
$$

Conservation of mass in the plenum requires that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}\left(\rho_{\mathrm{plm}} \mathrm{~V}_{\mathrm{plm}}\right)=\rho_{\mathrm{fnpl}} Q_{\mathrm{fnpl}}-\rho_{\mathrm{plm}} Q_{\mathrm{plch}}-\rho_{\mathrm{plm}} Q_{\mathrm{pltk}} \tag{92}
\end{equation*}
$$

From Equations (91) and (92)

$$
\begin{equation*}
\frac{d P_{\mathrm{plm}}}{d t}=\frac{K\left(P_{\mathrm{plm}}+P_{\mathrm{at}}\right)}{\rho_{\mathrm{plm}} V_{\mathrm{plm}}}\left[\rho_{\mathrm{fnpl}} Q_{\mathrm{fnpl}}-\rho_{\mathrm{plm}} Q_{\mathrm{plch}}-\rho_{\mathrm{plm}} Q_{\mathrm{pltk}}\right] \tag{93}
\end{equation*}
$$

Substituting $\rho_{\text {plm }}=\rho_{\text {fnpl }}=\rho$ (mean density), the dynamic flow continuity equation for the plenum is as follows.

$$
\begin{equation*}
\frac{d P_{\mathrm{plm}}}{\mathrm{dt}}=\frac{K\left(P_{\mathrm{plm}}+\mathrm{P}_{\mathrm{at}}\right)}{V_{\mathrm{plm}}}\left[Q_{\mathrm{fnpl}}-Q_{\mathrm{plch}}-Q_{\mathrm{pltk}}\right] \tag{94}
\end{equation*}
$$

(b)

Cushion

The continuity equation for the cushion is similar to Equation (94), with an additional term to include the rate of change of cushion volume due to motion.

$$
\begin{equation*}
\frac{d P_{c h}}{d t}=\frac{K\left(P_{c h}+P_{a t}\right)}{V_{c h}}\left[Q_{p l c h}+Q_{t k c h}-Q_{c h a t}-\frac{d V_{c h}}{d t}\right] \tag{95}
\end{equation*}
$$

where
$\frac{d V_{c h}}{d t}$ - rate of change of cushion volume.
(c) Trunk

$$
\begin{equation*}
\frac{d P_{t k}}{d t}=\frac{K\left(P_{t k}+P_{a t}\right)}{V_{t k}}\left[Q_{p l t k}-Q_{t k c h}-Q_{t k a t}-\frac{d V_{t k}}{d t}\right] \tag{96}
\end{equation*}
$$

Equations (88), (89), (94), (95) and (96) define the dynamic heave model of the ACLS. The flows, areas, volumes and lengths needed to evaluate these equations are found from the relationships derived in Section C. 2.

C. 4 Analytical Simplifications

The analysis described above has been developed for a general ACLS configuration. In using this analysis, several situations exist when the general relationsips can be simplified without loss of accuracy. These exist, for example, when some of the (user supplied) orifice areas are so large that the pressure drop across them is negligible, and need not be included in the computations. The program automatically determines the cases when such simplifications are possible, and modifies the basic analytical model accordingly to eliminate unnecessary computation. The modifications to the basic analysis are described below.
(a) When the cushion is high above the ground, the cushion pressure is equal to the atmospheric pressure. Although this result can be obtained from computation of Equation (78), significant computing reductions are achieved by assuming $P_{c h}=0$ and $\mathrm{dP}_{\mathrm{ch}} / \mathrm{dt}=0$ (without computation) when the height is very large (i. $e_{\text {, , prior to the landing }}$ impact). Thus, at the beginning of the simulation, when the cushion-to-atmosphere gap is more than the ground effect gap*, the right-hand side of Equation (78) is not computed, but is set equal to zero. When the cushion enters the ground effect region (i.e., gap less than ground effect gap), the above constraint on Equation (78) is removed.
(b) When the trunk-to-plenum orifice is large - i.e., the pressure drop is less than 2% of the upstream pressure the plenum and trunk are treated as a single chamber, and Equations (94) and (96) are combined into a single equation.

$$
\begin{align*}
\frac{d}{d t} P_{p l m}=\frac{d}{d t} P_{t k} & =\frac{K\left(P_{p l m}+P_{a t}\right)}{\left(V_{p l m}+V_{t k}\right)}\left(Q_{f n p l}-Q_{p l c h}\right. \\
& \left.-Q_{t k c h}-Q_{t k a t}-\frac{d V_{t k}}{d t}\right) \tag{97}
\end{align*}
$$

(c) During dynamic operation, when the sharp peaks in cushion pressure occur, the force on the trunk membrane at the cushion-trunk interface will reverse (i.e., the computations of Equations (95) and (96) will indicate $P_{c h}>P_{\text {tk }}$. In such cases, trunk motion will tend to equalize the pressure difference, and this is included in the analysis by treating the trunk and cushion as a single chamber,

[^4]with $P_{c h}=P_{\text {dk, }}$ and combining Equations (95) and (96) into a single equation.
\[

$$
\begin{align*}
\frac{d}{d t} P_{t k}=\frac{d}{d t} P_{c h}= & \frac{K\left(P_{t k}+P_{a t}\right)}{V_{t k}+V_{c h}}\left(Q_{p l t k}+Q_{p l c h}-Q_{t k a t}\right. \\
& \left.-Q_{c h a t}-\frac{d}{d t} V_{c h}-\frac{d}{d t} V_{t k}\right) \tag{98}
\end{align*}
$$
\]

(d) For the duration of time when situations (b) and (c) above exist simultaneously, the plenum, trunk and cushion are treated as a single chamber ($P_{c h}=P_{\text {th }}=P_{p l m}$) and Equations (94), (95) and (96) are combined into a single equation.

$$
\begin{array}{r}
\frac{d}{d t} P_{p l m}=\frac{d}{d t} P_{t k}=\frac{d}{d t} P_{c h}=\frac{K\left(P_{p l m}+P_{a t}\right)}{\left(V_{p l m}+V_{c h}+V_{t k}\right)} \\
\left(Q_{\text {fnpl }}-Q_{t k a t}-Q_{c h a t}-\frac{d}{d t} V_{c h}-\frac{d}{d t} V_{t k}\right) \tag{99}
\end{array}
$$

APPENDIX D - SUBROUTINE DESCRIPTIONS

A flow chart of the overall program is shown in Figure A. 1 and discussed in Appendix A. Detailed descriptions of the main program and subroutines are given below.

D. 1 Main Program

The main program coordinates the static and dynamic simulation, carries out the data conversion, prints the static characteristics and determines the initial conditions. Internally supplied data (discharge coefficients, etc.) are read in directly. Other data are read in through subroutine PROGIO, which also prints out the data.

The data conversion section of the program converts trunk orifice area (AH) from in^{2} to ft^{2}, mass from lbs to slugs, initial pitch angle (PHII) from degrees to radians, initial angular velocity (DPHII) from degrees per second to radians per second, and atmospheric pressure (PAT) from psi to psf. Density (RHO) is calculated from the atmospheric temperature. IFAN is set equal to zero to start the program with unstalled fan operation.

Subroutine TRUNK is called next to calculate the equilibrium shape of the trunk. ISHAPE is set equal to zero if the trunk configuration is infeasible and the program is terminated. Subroutine SEGMT divides the trunk into segments. Calculation of the distance of each segment center from the cushion center and assessment of the trunk and cushion areas and volumes (i values) associated with each segment is accomplished by calling subroutine SHAPE1.

The static characteristics of the ACLS are determined by calling subroutine FLOWl. ISAVE is set to zero if the configuration is considered infeasible (i.e., the static flow equations do not have feasible solutions). The equilibrium values of the variables (pressures, flows, etc.) for the given ACLS loading, along with the values at different load levels and load positions are printed.

The variable IPP is set to zero if the difference between the equilibrium trunk and plenum pressure is less than 2%. In such a situation, the computations are carried out by modeling the plenum and trunk as a single chamber with uniform pressure.

Initial conditions for the given landing configuration are either:
(a) Supplied by the user, i.e., XCGI, YCGI, PHII, VELXI, SINKRT and DPHI; or
(b) Calculated by calling subroutines COORDN, PROFILE, CLRNCE and SHAPE2, e.g., AGAP, VCH, VTK, etc.; or
(c) Estimated by interpretation from the static characteristics, i. e., PCH, PTK and PPLM.

The initial PCH is assumed to be 0 (psfg) if the initial gap area is more than the ground effect gap area. The parameter $N Q$, used in subroutine STEQU, controls the transition from the zero cushion pressure constraint as the ACLS moves into ground effect.

Finally, the dynamic simulation, Subroutine DYSYS, is called to carry out the numerical integration for the state equations, and determine the pressures, flows, motion, etc. of the ACLS as a function of time.

D. 2 SEGMNT

Subroutine SEGMNT divides the trunk into $4(M+N)$ segments. The values of M and N are specitied by the user. The straight section of the trunk is divided into 4 M segments (see Figure 2), and the circular part of the trunk is divided into 4 N segments. Since the trunk is symmetrical about axis BB , and since roll motion is not considered in this model, only the right half of the trunk is analyzed. The results for the left half of the trunk are found from a mirror image of the right half.

The distance of the center of each segment from the cushion center is calculated, using Equations (9) through (15), and stored in array XCX(I).

D. 3 TRUNK

Subroutine TRUNK calculates the trunk shape parameters R1, R2, L1, L2, PHIl and PHI2 from the user supplied parameters A, B, L and HY, as shown in Figure D. l.

Calculation of R1, R2, L1, L2, PHIl and PHI2 requires iteration. The iteration procedure is as follows:
(i) Initial guess, $R 2=\sqrt{\left(\frac{A}{2}\right)^{2}+H Y^{2}}$
(ii) $\quad \mathrm{PHI} 2=\operatorname{Cos}^{-1} \frac{\mathrm{R} 2-\mathrm{HY}}{\mathrm{R} 2}$
(iii) $\quad \mathrm{R} 1=\frac{(\mathrm{A}-\mathrm{R} 2 \operatorname{Sin}(\mathrm{PHI}))^{2}+(\mathrm{B}+\mathrm{HY})^{2}}{2(\mathrm{~B}+\mathrm{HY})}$
(iv) \quad PHII $=\operatorname{Cos}^{-1} \frac{\text { Rl-B-HY }}{\text { R1 }}$
(v) L2 = L - PHII*R1
(vi) \quad R2S $=\mathrm{L} 2 /$ PHI2

R2S is compared with R2. If the difference is more than the tolerance RTOL, a new value of R2 (R2 $=\frac{R 2+R 2 S}{2}$) is assumed and the procedure repeated until ABS(R2-R2S) < RTOL. For infeasible configurations, the iteration is stopped after 50 steps and the program is terminated.

Figure D. 1. Flow Diagram of TRUNK

Figure D. 1 (Concluded). Flow Diagram of 'TRUNK

The flow diagram for the subroutine SHAPEl is shown in Figure D.2. SHAPE1 calculates the peripheral length S and i-values of the areas and volumes (per segment) listed below.

Trunk cross section area (ATKI(I))
Trunk volume (VTKI(I))
Cushion area (ACHI(I))
Trunk-to-cushion flow area (ATKCHI(I))
Trunk-to-atmosphere flow area (ATKATI(I)).

The above parameters are calculated from Equations (21) through (30) of Appendix C. The contact area ATKCNI(I) is set equal to zero since ground contact is not considered in SHAPEl.

D. 5 COORDN

Subroutine COORDN calculates coordinates of the center of the cushion (XCC, YCC) from the coordinates of the CG (XCG, YCG) and the pitch angle (PHI) using Equations (7) and (8). The X and Y coordinates of the center of each segment are then calculated using Equations (16) and (17).
D. 6 PROFILE

Subroutine PROFILE contains the user supplied ground elevation coordinates. The subroutine then calculates the elevation of the ground at the projection of the segment center for each segment and stores it in the array $\mathrm{YG}(\mathrm{I})$.
D. 7 CLRNCE

Subroutine CLRNCE obtains the values of the Y coordinates of the segment centers, $\mathrm{YH}(\mathrm{I})$, from subroutine COORDN and the ground elevation

Figure D. 2. Flow Diagram of SHAPE1
corresponding to each segment, YG(I), from subroutine PROFILE, and calculates the hard surface clearance for each segment, YGH(I), using Equation (20).

D. 8 SHAPE2

Subroutine SHAPE2 determines various areas, volumes and center of pressure locations for each trunk segment from the hard surface clearance $\mathrm{YGH}(\mathrm{I})$. Those areas and volumes that have already been calculated in SHAPEl are not recalculated.

The subroutine is divided into three parts, as shown in Figure D. 3.

Part 1: In Part 1, i values of cushion volume $\mathrm{VCHI}(\mathrm{I})$ and cushion-to-atmosphere gap area AGAPI(I) are determined from Equations (31) through (34). These values have not been calculated in SHAPEl, since they depend on trunk orientation, which varies with hard surface height.

Part 2: In Part 2, initially it is determined whether groundtrunk contact for a particular segment has been made, i.e., whether YGH(I) < HY. If ground contact has occurred, r-values of the areas and volumes are calculated, which account for the decrements in the area and volume parameters due to the contact. Equations (35) through (49) are used to calculate the r-values. If a segment is not in ground contact, the r-values are set equal to zero. In either case, the location of the centers of pressure (cushion and trunk) for a segment with respect to the cushion center, $\mathrm{XCH}(\mathrm{I})$ and $\mathrm{XTK}(\mathrm{I})$ respectively, are calculated from Equations (60) through (65).

Part 3: In Part 3, the r-values of different areas and volumes of the segments are combined, and subtracted from the i-values, as shown in Equations (50) through (55).

Figure D. 3. Flow Diagram of SHAPE2

Figure D. 3 (Continued). Flow Diagram of SHAPE2

Figure D. 3 (Concluded). Flow Diagram of SHAPE2

The flow diagram of subroutine FORCE is shown in Figure D. 4. The following forces and torques are calculated in this subroutine.
(a) FORCN: The normal pressure force is obtained by multiplying the cushion pressure and the trunk pressure by the respective areas and taking the vertical component.
(b) TORN: The pressure force calculated for each segment is multiplied by the moment arm (i.e., the distance between the centers of pressure and the CG).
(c) FORCT: The r value of the contact area ATKCNR(I) is used to check whether ground contact for a particular segment has occurred. The trunk damping force is assumed to be equally divided amongst the trunk segments in contact. The damping force for each segment is calculated as shown in C.3.1.1 (e).
(d) TORQT: Torque generated by FORCT is calculated by multiplying the individual segment damping force by the center of pressure moment arm.
(e) TORF: The contact friction torque is calculated by taking the product of the normal trunk pressure force, coefficient of trunk-ground friction, and vertical distance of the trunk contact zone from the CG. The variable TORQ is set equal to the sum of the torques TORN and TORF.

Figure D. 4. Flow Diagram of FORCE
D. 10 FLOW 1

Subroutine FLOWl calculates the static performance characteristics of the ACLS. The height of the CG above the ground (YCG), pitch angle (PHI), cushion-to-atmosphere gap area (AGAP), and plenum, trunk and cushion pressures and flows are calculated for a range of loads and load CG positions including specifically the user supplied aircraft weight and CG position.
D. 10. 1 Summary

The subroutine essentially consists of three nested iteration loops, as shown in Figure D. 5.
(i)

Iteration 1: In Iteration 1 , values of YCG and PHI are iterated until the ACLS load and torque equal (within a given tolerance) the aircraft weight and the static torque due to CG offset.
(ii)

Iteration 2: This iteration determines the various pressures and flows associated with the fan, plenum, trunk and cushion. It iterates the value of PFAN until the air gap required to satisfy the orifice pressure-flow relations is within a given tolerance of the air gap calculated by geometry.
(iii)

Iteration 3: This iteration is required (within Iteration 2) to determine the values of cushion pressure which satisfy the orifice pressureflow relations.

Figure D. 5. Flow Diagram of FLOW 1

Figure D. 5 (Continued). Flow Diagram of FLOW1 123

Figure D. 5 (Continued). Flow Diagram of FLOW 1

Figure D. 5 (Continued). Flow Diagram of FLOW 1

Figure D. 5 (Continued). Flow Diagram of FLOW 1

Figure D. 5 (Concluded). Flow Diagram of FLOW1

The subroutine begins by assuming a grid of YCG, PHI values to initialize Iteration 1. The values of pressures and contact areas are calculated for the assumed values of YCG and PHI using Iterations 2 and 3. Subroutine FORCE is called next to determine the force and torque developed by the configuration under consideration. The CG offset corresponding to this torque is determined, and from this, a quadratic index of the difference between the ACLS force and aircraft weight, and the assumed and actual CG offset is formed. If the smallest quadratic index in the previous grid is larger than the acceptable tolerance value, a new grid of YCG and PHI is formed and the procedure is repeated. Otherwise, the iteration is terminated after the calculations are repeated once more to obtain the final equilibrium values. The values of the performance variables for an acceptable grid are stored along with the final equilibrium values and transferred to the Main Program for printout.
D. 10.2 Details
D. 10.2.1 Iteration 1
D. 10.2.1.1 Initialization

The initial YCG, PHI grid is formed as shown in Figure D. 6. The first value of YCG in this grid (YCGSTRT) is chosen equal to (HY+GG-0.1). The last value (YCGSTOP) is chosen equal to (HY+GG+0.1). Similarly, PHISTRT = -0.1 (radians) and PHISTOP $=0.1$. An initial grid of nine points is thus formed, as shown in Figure D. 6.
D. 10.2.1.2 Calculations

Subroutines COORDN, PROFILE, CLRNCE and SHAPE2 are called to determine the various areas and volumes associated with a particular grid point. Iterations 2 and 3 are then used to determine the various pressures and flows through the ACLS. If the configuration under consideration does not generate a positive value of

- lat grid
x 2nd grid
- 3rd grid
- Equilibrium value

XDIS minimum for $(3,3)$ in lst grid
XDIS minịmum for $(2,2)$ in 2 nd grid
XDIS minimum for $(2,3)$ in 3 rd grid and $<X T O L$.

Figure D.6. Grid Generation for FLOW1 Iteration
plenum or cushion pressure for any feasible point on the fan curve, it is considered infeasible and the computations are carried out for the next grid point. For all feasible grid points, the normal force FORCN and torque about the center of the cushion, TORQ, are determined. The distance of the CG from the center of the cushion, CC, is also calculated by dividing the torque by the force. FORCN and CC for a particular grid point are stored in two dimensional arrays, ZWT(IYCG, IPHI) and ZCC(IYCG, IPHI) respectively. For infeasible configurations, ZWT and ZCC are assigned a high value $\left(=10^{6}\right)$ for subsequent detection and elimination. The values of load, CC, YCG, PHI, AGAP, PCH, PTK and QFAN are also stored in arrays (static characteristics).

D. 10.2.1.3 Grid Point Evaluation

After the arrays ZCC and ZWT are formed for all nine points of the grid, the points are tested to determine which point comes closest to the actual values of ACLS load and CG location (stored as CCI).

A quadratic index is formed to determine the proximity of the calculated grid point from the physical value.

$$
\operatorname{XDIS}=\left(\frac{L W \cdot I(1, J)-\operatorname{MASS} * 3 L . L}{M A S S * 32.2}\right)^{2}+\left(\frac{\angle C C(I, J)-\operatorname{CCI}}{C C I}\right)^{2}
$$

Calculation of XDIS is carried
out for all the feasible grid points. From this, the minimum value of XDIS, corresponding to a particulargrid point, designated (IS, JS), is set equal to XTEST. If XTEST is within the iteration tolerance limit XTOL, the grid point (IS, JS) is taken as the equilibrium solution, and ICREST is assigned a value 2. The calculations are then repeated once more to determine updated values of YCG and PHI corresponding to the grid point (IS, JS), and the iteration is terminated. The values of YCG and PHI so found are returned to the Main Program.
If, however, XTEST > XTOL,
a new grid is formed by observing the following rules.
(a) If grid point (IS, JS) is not the midpoint, as in Grid 1 (Fig. D. 6), the grid is moved such that it does become a midpoint, as shown in Grid 2.
(b) If the grid point (IS, JS) is the midpoint, the new grid is shrunk in size, so that each side is half that of the original grid and the midpoint remains unchanged. The transfer from Grid 2 to Grid 3 in Figure D. 6 illustrates this situation.
(c) If none of the points in the original grid is feasible, a new grid is formed with higher values of YCGSTRT and YCGSTOP, but without changing the values of PHI.

The procedure is then repeated as before until XDIS < XTOL. If after 40 iterations a solution cannot be found, the program terminates with an error message.

$$
\text { D. 10.2.2 Iterations } 2 \text { and } 3
$$

Iterations 2 and 3 find the value of PFAN such that the cushion-to-atmosphere gap area satisfying the orifice pressureflow relations is equal (within a given tolerance) to the gap area generated by SHAPE2 in Iteration 1.

The procedure is as follows.
(a) Initially, two fan pressure rise increment values PINC and PINCl are defined. PINCl is used to converge rapidly to the first feas ible configuration, starting from PFAN $=0$. Thereafter, PINC is used to determine the static characteristics for 10 values of PFAN.
(b) QFAN is found from PFAN by calling subroutine CMPCRV (fan characteristics).
(c) PATFN is determined from Equation (66).
(d) PPLM is found from Equation (67). The value of PPLM is checked. If it is negative, the configuration is infeasible, PSTART is assumed to be PSTART + PINCl and the process is restarted.
(e) QPLAT is found using Equation (69).
(f) QFNPL is found using Equation (70).

Iteration 3 is set up next to evaluate PCH.
This is summarized in steps (g) through (n).
(g) Initially PCH is assumed to be equal to PPLM/2.
(h) : QPLCH is found using Equation (72).
(i) QPLTK is found using Equation (71).
(j) PTK is found using Equation (73).
(k) QTKAT is found using Equation (76).
(1) QTKCH is found from Equation (74).
(m) PCHI is determined from Equation (75).
(n) PCHI found in (m) is compared with initially guessed PCH. If the difference is less than PTOL, the iteration is assumed to be complete. Otherwise, a new value of $\mathrm{PCH}=\frac{\mathrm{PCH}+\mathrm{PCHI}}{2}$ is assumed and the process repeated from step (h).
(o) If PCH is found to be negative, PSTART is assumed to be equal to PSTART + PINC1 and the process repeated from the beginning (Step (a)).
(i) In case the new value of PSTART is just one step from PSTOP, a new value of PINC1 is defined as $\frac{\text { PSTOP-PSTART (final) }}{80}$, so that the search for feasible configurations can be continued all the way to PSTOP.
(ii) If a feasible configuration is not found within the full flow range of the fan, the calculations are performed for the next grid point.
(p) If PCH > PTK, a new value of PSTOP is found, PSTOP = PFANPINC, and the procedure is repeated from the beginning (Step (a)).
(q) QCHAT is found using Equation (77).
(r) AGAPP(I) is found using Equation (78).
(s) PFAN is stored as PFANS(I).

The above procedure is repeated until 10 values of AGAPP(I) corresponding to 10 values of PFAN are found. Then the iteration value of AGAPP closest to the value of AGAP generated by SHAPE2 is found. This value is designated as AGAPP(IDIF). If the difference between these values is less than ATOL, the iteration is complete; and updated values for the pressures, flows, and areas are calculated for the fan pressure value, PFAN(DIF). If, however, $\mid A G A P P(I D I F)$-AGAP|>ATOL, new values of PFAN are chosen and the iteration is repeated from Step (a). The new initial value is set equal to PFANS (IDIF-1), and the new final value is set equal to PFANS(IDIF+1). If, after 10 attempts, the iteration has not converged, the grid point in question is considered infeasible, and the calculations are then carried out for the next grid point.
D. 11 DYSYS

Subroutine DYSYS, shown in Figure D. 7, coordinates the dynamic simulation and calls the various subroutines. Initially, DYSYS calls STEQU to set up initial values of the derivatives of the state variables. Then it calls RKDIF to get new values of the variables at the next time step. The values are printed after every MM (user supplied) time steps.

DYSYS also carries out the following steps:
(a) It determines the values of DVCH, DVTK, VELX and XCG.
(b) It sets the value of the fan control parameter IFAN. This parameter is used by the fan subroutine CMPCRV to select the appropriate fan characteristic (IFAN $=0$, unstalled operation; IFAN $=1$, stalled operation). IFAN is set as follows

$$
\begin{array}{lll}
\text { QFAN }<\text { QP5 } & ; & \text { IFAN }=1 \\
\text { QFAN }>\text { QP3 } & ; & \text { IFAN }=0
\end{array}
$$

(c) It sets the trunk inflation parameter IPCT, which determines whether the cushion and trunk behave as two connected chambers or as a single independent chamber (See Appendix C). When PCH > PTK, the trunk membrane moves to equalize the trunk and cushion pressures. Thus for $\mathrm{PCH}>$ PTK, IPCT is set equal to zero and the computation is carried out (in STEQU) by considering a single chamber for the (combined) trunk and cushion. When PCH \leq PTK, the trunk remains in its normal inflated shape. In this case, IPCT = 1 .

RKDIF is the numerical integration subroutine which calculates the values of the state variables at time $t+d t$, given the values at time t, using a 4th order Runge Kutta method. The integration scheme is summarized below.
(a) The iteration procedure starts with the values of the state variables y_{1}, y_{2}, etc., at time t.
$\mathrm{y}_{\mathrm{i}}(\mathrm{t}) \quad \mathrm{i}=1, \mathrm{n}$
(b) The slopes $D y_{i}(t)$ are then determined from $y_{i}(t)$ by calling STEQU.
$D y_{i}(t)=d y_{i}(t) / d t$
(c) The values $y_{i 1}$ at time $t+\frac{d t}{2}$ are then determined, $y_{i l}=y_{i}+D y_{i} \cdot d t / 2$
(d) The slopes $D y_{i 1}(t+d t / 2)$ are then determined by calling STEQU and using the values of $y_{i 1}$ found in (c) above.
(e) The values $y_{i 2}$ at time $t+d t / 2$ are then determined $y_{i 2}=y_{i}+D y_{i 1} \cdot d t / 2$
(f) The slopes $D y_{i 2}(t+d t / 2)$ are then determined from STEQU using the values of $y_{i 2}$ found in (e) above.
(g) The values $y_{i 3}$ at time $t+d t$ are then determined $y_{i 3}=y_{i}+D_{y i 2} \cdot d t$
(h)

The slopes $\mathrm{Dy}_{\mathrm{i} 3}$ at time $\mathrm{t}+\mathrm{dt}$ are then determined from STEQU using the values of $y_{i 3}$ found in (g) above.
(i) Finally, the values of the state variables at time $t+d t$ are found as follows

$$
y_{i}(t+d t)=y_{i}(t)+\left(D y_{i}+2 D y_{i 1}+2 D y_{i 2}+D y_{i 3}\right) d t / 6
$$

During each integration step (i.e., to advance from t to $t+d t$), $S T E Q U$ is needed four times to determine the slopes (b, d, f, g above). The fifth call for STEQU in DYSYS is to check whether PCH exceeds PTK.
D. 13 STEQU

The flow diagram for subroutine $S T E Q U$ is shown in Figure D. 8. STEQU determines the values of the derivatives of the state variables by substituting the state variables in the state equations. Besides the seven state variables, PPLM, PCH, PTK, YCG, SINKRT, PHI and DPHI, the state equations need values of other variables (such as flows, forces, torques, areas and volumes) which are determined from the state variables.

The areas and volumes for the given state variables are obtained by calling subroutines COORDN: PROFILE. CLRNCE and SHAPE2. The flows are obtained from subroutine FLOW2 and the forces and torques from subroutine FORCE.

The appropriate dynamic equations are chosen depending on which one of the five conditions below prevails.
(a) Normal operation, Equations (94), (95) and (96).
(b) When the pressure drop across the trunk orifice is negligible ($<2 \%$), Equations (94) and (96) are replaced by Equation (97).

Figure D. 8 (Concluded). Flow Diagram of STEQU
(c) ACLS above ground effect zone - i.e., $P C H=0$, and $\operatorname{DER}(2)=\mathrm{dP}_{\mathrm{ch}} / \mathrm{dt}=0$. (Right hand side of Equation (95) set equal to zero.) When the cushion enters the ground effect zone, the above constraints on cushion pressure are removed, and $d P_{c h} / d t$ is changed in $N Q$ steps from zero to the value found from Equation (95).
(d) When PCH $>$ PTK, the cushion and trunk are combined, and the value of IPCT is set to 0 in DYSYS. For $\operatorname{IPCT}=0$, Equations (95) and (96) are replaced by Equation (98).
(e) If both conditions (b) and (d) exist simultaneously, the plenum, trunk and cushion are combined and Equations (94), (95) and (96) are replaced by (99).

Forces and torques due to aerodynamic drag are also calculated in STEQU and included in the respective state equations.
D. 14 FLOW 2

Subroutine FLOW2 calculates the flows through the various orifices from the pressures ($\mathrm{PCH}, \mathrm{PTK}, \mathrm{PPLM}$) and the cushion-to-atmosphere gap area (AGAP), as shown in Figure D. 9. The subroutine solves the 10 pressure-flow equations, Equations (66) through (70), (72), (73), (75), (76) and (78) for the 10 unknowns, QFAN, QPLAT, QFNPL, QPLCH, QPLTK, QTKAT, QTKCH, QCHAT, PATFN and PFAN. The solution procedure is as follows:
(a) QPLTK is calculated from Equation (73).
(b) QPLCH is calculated from Equation (72).
(c) QTKCH is calculated from Equation (75).

Figure D. 9. Flow Diagram of FLOW2

Figure D. 9 (Concluded). Flow Diagram of FLOW2
(d)
(e) If the upstream orifice drop is not included in the model (i.e., AATFN $>1 \mathrm{sq} \mathrm{ft}$), PATFN $=0$, PFAN $=$ PPLM, and QFAN is determined from the fan subroutine CMPCPV. If the upstream resistance is included (AATFN $\leq 1 \mathrm{ft}^{2}$), an iteration is carried out to determine PATFN, as described in steps (f) through (i) below.
(f) An initial value of PFAN is chosen and represented by the variable PEN(J).
(g) PFAN is determined from Equation (67).
(h) QFAN is determined from the fan subroutine CMPCRV.
(i) A new value of PEN, PEN($J+1$), is found using Equation (66). If the difference between $\operatorname{PEN}(\mathrm{J})$ and $\operatorname{PEN}(\mathrm{J}+1)$ is less than PTOL, PATFN is set equal to PEN(J+1). Otherwise a new value, $\operatorname{PEN}(\mathrm{J}+2)$ is determined and the procedure repeated from step (h). The new value $\operatorname{PEN}(J+2)$ is selected as $\frac{P F: N(T)+P F N(T+1)}{2}$, if tine sign of PEN(J)-PEN(J+1) is the same as the sign of PEN(J-2)-PEN(J-1). Otherwise PEN(J+2) is selected as $\frac{\operatorname{PEN}(J)+\operatorname{PEN}(J-2)}{2}$. This iteration scheme was chosen to bring about rapid convergence.
(j) QPLAT is determined from Equation (69).
(k) QFNPL is determined from Equation (70).
(1) QCHAT is determined from Equation (78).

D. 15 CMPCRV

Subroutine CMPCRV determines the fan flow (QFAN) for a given fan pressure rise (PFAN).

The fan characteristics (see Figure 7) consist of two curves the unstalled characteristic and a stalled characteristic. Both curves have been expressed in terms of 4 th order polynomials. The polynomial coefficients and the pressures and flows indicating the curve limits of Figure 7 are supplied by the user.

The region of operation is determined by QFAN. If QFAN is calculated to be less than QP5, IFAN is set equal to 1 and the fan operates in stall. If QFAN is more than QP3, IFAN is set to 0 and the fan operates in the unstalled region. If QFAN lies between QP3 and QP5, IFAN is set equal to its previous value, and the fan continues to operate in the stall or unstalled region, depending on the region in which it was operating previously. IFAN is determined in DYSYS and is transferred to CMPCRV through COMMON.
NUN VERSION 2.3 --NSRL LEVEL 373--
opogram fmaz. (InPut, output, tape5ainput,! apeamoU!putl
$-\cdots+\cdots+\cdots$ 08/05/74

RUN VIRSION 2.3 -arspl LEVEL 373.0.

OCOOC3 COMMON/SHAPE/VCHI(100),VCHD(ÍO1),AGIPI(100),AGADR(100),ATKR(100),

' A AMMONFLULOC FAN,

COMMAN/ICLN/ICLN
COMMAY
CHAMACTLRISTICS
PIC CHATACTERISTICS ARQAY

i.foncy-tinat

200000
E00000
000003
000003
000003 C STI
。

- 0

RUN VTRSION 2.3 -WSRL LEVEL 373-0

RUN VERSION 2.3 = $=$ SPL LEVEL 373-0

0R/05/74

- INITIAL ASSESESENAPE OF

RUM VFRSION 2.3 --THSAL LEVEL 373-0

RUN varsion 2.3 --rSpl Level 373-0

 14/50/80 C MISTiNEE AF SEGMENT PAESSURE CEGTERS FRUM CUSMION CENTER
 3) RUN VIRASION 2.3 -OPSRL LEVEL 373-0 .

 $v V^{2}=0.0$

TVIN

$$
\left\langle R_{1}\right. \text { *RR1) }
$$

.

Cececen faN! INUE
agapsone
VTK=VTK+2.C*(VTKI(I)-VTKR(If)
ATK Q TKCHF
PTKLHEATKCH\& © AHTKCHF
PF(ATKATF-LT:O.J)ATKATF』0.0
VCH=VEM+z-nolveri(I)-VCHR(I))

FIÄGAP-LT.ALEAB!ABAPEALEAK
CHEVCHOVCHO

1
\vdots
0
i
$0007+9$
$00 c 761$ i
\because
$=$
\vdots
\because
3

\therefore $\cdots \quad \because \quad i$ | . |
| :--- |
| |
| |
| $=$ |
| \vdots |
| \vdots |

M-A

RUN VFRSION 2.3 -.NSRL LEVEL 373.-

$-$

RUN VERSION 2.3 -OHSRL LEVEL 373-0
 CTFAMTIUN I A-GINS, YGG,PMI ITFSATED
-

i
\vdots
i
000077

no $\mathcal{C O O}$ IrCGE1.3
PHI PMISTRT
PHI CCUIPHI=1,3
पlTatitol

(ACGEST,EO. 2) CCEZCC (IS. JS' IS UETERMINED FOK GIYEN YCR', PNI
 CALL COORILE
 FiALL smade?

ppys-STM
YRSIEO
ICASE日

OSTART $=0.0$
OSTCP
OPP1

C ITERATIUN 2 REGSNS.PYAN ITERATEN
C

OCOIC?
OOOICS
-0010T CALL FAN MODEL TO FIND OFAN
PPLMEPFAN+PAIFN GO TO 35
CTGVI.0

000079
$000 n 74$

000197

$0 n 0 n 71$
$0000 \div 5$

RUN VIRSION 2.3 --TMSL LEVEL 373-0
000134 PCH=PPLM/2.

n
4.
0.
0.

QOLTKニQFNPL-GPLCH
FLOW1

RUN VIRSION 2.3 - -PSRL LEVEL 373--
C OYNAMIC SINULATION PROG

RUN vFASION 2.3 - ONSEL LEVEL 3?3-0

08/03/74

C FOLLAWING SURRNUTINES ARE CALLEN TO GENERATE VALUES OF
C FLOWG, TUKOUES ANO FORCES, FPOM STATE VAKLARLFS, FOR STATE EQUATIONS
F!L $\operatorname{CiOFIIE}$
CALL 54:PE
CALL FORCE
r r

n
z
n
m
y
3
\vdots
u

mfoi 10 = OFR(i)
(UP)

RUN VTRSION 2.3 -OPSRL LEVEL 373-*

「г(rTK.LT.O.)SIGNE-1.

$$
\begin{aligned}
& F N-1=-31 \\
& 3 \cdot+1+31
\end{aligned}
$$

C NO ITEUATIUN IF FAN INLET.IS.OSFN.
FFAV=PPLM \quad CMPCRV\{GFAN,PFAN)
c $3 \sum_{i=1}$

- if (J.3T.50) 90 10 2A
OALL MPPCRV (UFAIN;PFAN)
CIGNaI-0..... OISTGNE=1.0

77
030101
000193

000131
1

08/05/74

APPENDIX F

ILLUSTRATIVE SIMULATION -
INPUT DATA AND SAMPLE PRINTOUT

Internal Data List

CPA	0.6
CAF	1.0
CPC	0.6
CPT	0.9
CTC	0.9
CGAP	1.0
CTA	0.9
CKK	1.4
GEC	10.0
ZETA	0.05
PERTK	0.85
PERCH	0.15
U	0.4
DECCL	15.0

air cushion lanoing system
OYN:MIC SIMULAT!ON OF MEAVE-PITCH MOTION
THIS PROGRAM COMPUTES THE STATIC CMARACTERISTICS OF THE ACLS CAUSED GY LANMING ANO TAXIING
truni parameteps
STRAIGHT SECTION LENGTH
INNER ATTACHMENT ISTANCE
HORIT DTST GEI ATIACH PNTS
MORIT DIST BE! ATIACH PNTS
PEQIUFTR OF TAUNK CRNSSECTION
TQIINK HETGHT
NUMGE CF OHIFICE PUWS
NUMEE OF OHIHICES PER ROM
NUMAE A OF OHIFIEES PER ROW
SOACIMG RETWEEN NKIFICE ROWS
MERIPIFRAL DISTANCF BETWFEN
SNMER ATTACMM! PN! - FIRSI RNW

ORIFICE AMEA MLENUM TO TRUNK
ORIFICE AHEA MLENUM TO TTMA
EFFECTIVE AREA ATMOS. TO FAN
HLENUM YOL UME
DEAO VOLIME OF CUSHION
INITIAL x CUONTAN CONDITIONS
INITYAL X CUONNN OF CG
$13.370-$ FI/SEE
-0.000
0.000 DERRE/SEC
SNOILIOHOD 7VINSNNUZIAN3

3

OŸNAMIC SImULATION

[^5]
[^0]: -For sate by the National Technical Informatiun Service, Syrinefficid, Virginia 22151

[^1]: *For elastic trunks, the inelastic "frozen" trunk model described, requires modifications to include elastic effects.

[^2]: *When point C coincides with point A, stall is suppressed.

[^3]: *Drag relationships are preliminary and primarily valid for zero speed drops. In subsequent phases, more detailed models of the aerodynamic characteristics are planned for inclusion in the model.

[^4]: *Gap at which the cushion pressure begins to increase above atmospheric pressure. This gap is specified by the user.

[^5]: (Only the first page of the dynamic results is reproduced here.)

