1,396 research outputs found

    Structural control interaction

    Get PDF
    The basic guidance and control concepts that lead to structural control interaction and structural dynamic loads are identified. Space vehicle ascent flight load sources and the load relieving mechanism are discussed, along with the the characteristics and special problems of both present and future space vehicles including launch vehicles, orbiting vehicles, and the Space Shuttle flyback vehicle. The special dynamics and control analyses and test problems apparent at this time are summarized

    The Application of Molecular Orbital Calculations to Wood Chemistry. II. The Protonation of Beta-Methyl Glucopyranoside

    Get PDF
    The protonation step in the acid hydrolysis reaction of beta-methyl glucopyranoside was studied by molecular orbital techniques. The semi-empirical, self-consistent fields method of modified neglect of diatomic overlap (MNDO) was used to calculate energetic and electronic information in an attempt to determine the site of initial protonation

    Electrophysiological Measurements and Analysis of Nociception in Human Infants

    Get PDF
    Pain is an unpleasant sensory and emotional experience. Since infants cannot verbally report their experiences, current methods of pain assessment are based on behavioural and physiological body reactions, such as crying, body movements or changes in facial expression. While these measures demonstrate that infants mount a response following noxious stimulation, they are limited: they are based on activation of subcortical somatic and autonomic motor pathways that may not be reliably linked to central sensory processing in the brain. Knowledge of how the central nervous system responds to noxious events could provide an insight to how nociceptive information and pain is processed in newborns

    The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development

    Get PDF
    The ubiquitin-dependent N-end rule pathway relates the in vivo half-life of a protein to the identity of its N-terminal residue. This proteolytic system is present in all organisms examined and has been shown to have a multitude of functions in animals and fungi. In plants, however, the functional understanding of the N-end rule pathway is only beginning. The N-end rule has a hierarchic structure. Destabilizing activity of N-terminal Asp, Glu, and (oxidized) Cys requires their conjugation to Arg by an arginyl–tRNA–protein transferase (R-transferase). The resulting N-terminal Arg is recognized by the pathway's E3 ubiquitin ligases, called “N-recognins.” Here, we show that the Arabidopsis R-transferases AtATE1 and AtATE2 regulate various aspects of leaf and shoot development. We also show that the previously identified N-recognin PROTEOLYSIS6 (PRT6) mediates these R-transferase-dependent activities. We further demonstrate that the arginylation branch of the N-end rule pathway plays a role in repressing the meristem-promoting BREVIPEDICELLUS (BP) gene in developing leaves. BP expression is known to be excluded from Arabidopsis leaves by the activities of the ASYMMETRIC LEAVES1 (AS1) transcription factor complex and the phytohormone auxin. Our results suggest that AtATE1 and AtATE2 act redundantly with AS1, but independently of auxin, in the control of leaf development

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    Stimulation of Host Immune Defenses by a Small Molecule Protects C. elegans from Bacterial Infection

    Get PDF
    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans–based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens

    Toward a first-principles integrated simulation of tokamak edge plasmas

    Get PDF
    Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary first-principles, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles

    The Gaia-ESO Survey: N-body modelling of the Gamma Velorum cluster

    Get PDF
    The Gaia-ESO Survey has recently unveiled the complex kinematic signature of the Gamma Velorum cluster: this cluster is composed of two kinematically distinct populations (hereafter, population A and B), showing two different velocity dispersions and a relative ~2 km s^-1 radial velocity (RV) shift. In this paper, we propose that the two populations of the Gamma Velorum cluster originate from two different sub-clusters, born from the same parent molecular cloud. We investigate this possibility by means of direct-summation N-body simulations. Our scenario is able to reproduce not only the RV shift and the different velocity dispersions, but also the different centroid (~0.5 pc), the different spatial concentration and the different line-of-sight distance (~5 pc) of the two populations. The observed 1-2 Myr age difference between the two populations is also naturally explained by our scenario, in which the two sub-clusters formed in two slightly different star formation episodes. Our simulations suggest that population B is strongly supervirial, while population A is close to virial equilibrium. We discuss the implications of our models for the formation of young star clusters and OB associations in the Milky Way.Comment: 12 pages, 7 figures, 2 tables, Astronomy and Astrophysics, in pres
    corecore