147 research outputs found

    Trout Populations in the Clark fork River, Warm Springs to superior, Montana

    Get PDF
    In no part of the world is the water more limpid or pure, for whatever may be the depth of the river the bottom is seen as if there were nothing to intercept the view. These words were written by Father deSmet describing the upper Clark Fork River he observed on a trip through the upper basin in 1841. Obviously, the days of such purity are sadly gone for the Clark Fork. But by the same token, gone hopefully forever are the days when the Clark Fork was Western Montana\u27s sewer to the ocean. This was the headline of an article in the Daily Missoulian, July 10, 1960, in which the reporter described vividly the disgusting mess, which flowed through the area carrying a heavy load of toxic metals, trash of all descriptions, and sewage from nearly every town and industry in the valley. In those days fish kills were documented from the headwaters down the river as far as Superior, and clean-water aquatic insect life was at a nadir. Tremendous improvements in the fishery have occurred since 1960, but there is still a long way to go to restore the full potential of the sport fishery and the amenities it provides. The sport fishery of the Clark Fork upstream from Milltown Dam consists predominantly of brown trout (Salmo trutta) with small numbers of rainbow trout (Salmo gairdneri), cutthroat trout (Salmo alarki lewisi), bull trout (Salvelinus aonfluentus), and brook trout (Salvelinus fontinalis). Downstream from Milltown Dam rainbow trout dominate the species composition with smaller numbers of the other species. In our present-day management of these species we strive to provide fishermen a good opportunity to catch a trout 14 inches or larger and we work to improve the environment for self-sustaining wild trout populations

    Test equipment data package for the KC-135 fiber pulling apparatus

    Get PDF
    The Fiber Pulling Apparatus (FPA) is a device designed to produce continuous glass fibers from simulated lunar soil, and to determine the effects of reduced gravity, specifically 1/6 g on fiber formation and resultant properties. Briefly, pre-melt simulated lunar soil will be placed in a pint crucible and heated to 1200 C or higher, up to a maximum temperature of 1400 C. At a given temperature, a quartz fiber will be immersed into the melt and then pulled through a chill block and wound onto a cylindrical bobbin using a servo motor control. A high resolution video camera will record the fiber as it is being pulled. This assembly wil be enclosed in Plexiglas. Before fiber pulling commences, the apparatus will be backfilled with dry nitrogen. A separate data acquisition system will support this apparatus. This system will contain a personal computer, video recorder, and monitor. Temperature, acceleration, winding speed, and video images will be controlled and recorded using the data acquisition system. Thus, the FPA will consist of two hardware packages, the fiber production assembly and the data acquisition rack. The primary objective of this test is to determine the effects of 1/6 g on the formation of continuous glass fiber made from simulated lunar soil. Baseline studies using the FPA on the ground will provide a reference for the 1/6 g studies. Of particular interest will be the effect of 1/6 g on the free fluid zone where the fiber exits the crucible. In the fiber spinning parlance this zone is known as the upper jet region, where the boundary slope is greater than one tenth. The properties of the resulting glass fiber will depend on the jet shape as well as distributions of velocity, temperature and tension within the jet. It is unknown at this time how 1/6 g will effect these parameters

    Evaluating Large Spontaneous Deletions in a Bovine Cell Line Selected for Bovine Viral Diarrhea Virus Resistance

    Get PDF
    Bovine viral diarrhea virus’s (BVDV) entry into bovine cells involves attachment of virions to cellular receptors, internalization, and pH-dependent fusion with endosomal membranes. The primary host receptor for BVDV is CD46; however, the complete set of host factors required for virus entry is unknown. The Madin-Darby bovine kidney (MDBK) cell line is susceptible to BVDV infection, while a derivative cell line (CRIB) is resistant at the level of virus entry. We performed complete genome sequencing of each to identify genomic variation underlying the resistant phenotype with the aim of identifying host factors essential for BVDV entry. Three large compound deletions in the BVDV-resistant CRIB cell line were identified and predicted to disrupt the function or expression of the genes PTPN12, GRID2, and RABGAP1L. However, CRISPR/Cas9 mediated knockout of these genes, individually or in combination, in the parental MDBK cell line did not impact virus entry or replication. Therefore, resistance to BVDV in the CRIB cell line is not due to the apparent spontaneous loss of PTPN12, GRID2, or RABGAP1L gene function. Identifying the functional cause of BVDV resistance in the CRIB cell line may require more detailed comparisons of the genomes and epigenomes

    First gene-edited calf with reduced susceptibility to a major viral pathogen

    Get PDF
    Bovine viral diarrhea virus (BVDV) is one of the most important viruses affecting the health and well-being of bovine species throughout the world. Here, we used CRISPR-mediated homology-directed repair and somatic cell nuclear transfer to produce a live calf with a six amino acid substitution in the BVDV binding domain of bovine CD46. The result was a gene-edited calf with dramatically reduced susceptibility to infection as measured by reduced clinical signs and the lack of viral infection in white blood cells. The edited calf has no off-target edits and appears normal and healthy at 20 months of age without obvious adverse effects from the on-target edit. This precision bred, proof-of-concept animal provides the first evidence that intentional genome alterations in the CD46 gene may reduce the burden of BVDV-associated diseases in cattle and is consistent with our stepwise, in vitro and ex vivo experiments with cell lines and matched fetal clones

    Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.

    Get PDF
    New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved

    Glass Formulation Development for INEEL Sodium-Bearing Waste

    Get PDF
    Studies were performed to develop and test a glass formulation for immobilization of sodium-bearing waste (SBW). SBW is a high soda, acid high activity waste stored at the INEEL in 10 underground tanks. It was determined in previous studies that SBW?s sulfur content dictates the its loading in borosilicate glasses to be melted by currently assumed processes. If the sulfur content (which is ~4.5 mass% SO3 on a non-volatile oxide basis in SBW) of the melter feed is too high then a molten alkali sulfate containing salt phase accumulates on the melt surface. The avoidance of salt accumulation during the melter process and the maximization of sulfur incorporation into the glass melt were the main focus of this development work. A glass was developed for 20 mass% SBW (on a non-volatile oxide basis), which contained 0.91 mass% SO3, that met all the processing and product quality constraint determined for SBW vitrification at a planned INEEL treatment plant?SBW-22-20. This report summarizes the formulation efforts and presents the data developed on a series of glasses with simulated SBW. Summar

    π0\pi^0 photoproduction on the proton for photon energies from 0.675 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction γp→pπ0\gamma p \to p \pi^0 have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.Comment: 18 pages, 48 figure

    Phase II study of the oxygen saturation curve left shifting agent BW12C in combination with the hypoxia activated drug mitomycin C in advanced colorectal cancer

    Get PDF
    BW12C (5-[2-formyl-3-hydroxypenoxyl] pentanoic acid) stabilizes oxyhaemoglobin, causing a reversible left-shift of the oxygen saturation curve (OSC) and tissue hypoxia. The activity of mitomycin C (MMC) is enhanced by hypoxia. In this phase II study, 17 patients with metastatic colorectal cancer resistant to 5-fluorouracil (5-FU) received BW12C and MMC. BW12C was given as a bolus loading dose of 45 mg kg−1over 1 h, followed by a maintenance infusion of 4 mg kg−1h−1for 5 h. MMC 6 mg m−2was administered over 15 min immediately after the BW12C bolus. The 15 evaluable patients had progressive disease after a median of 2 (range 1–4) cycles of chemotherapy. Haemoglobin electrophoresis 3 and 5 h after the BW12C bolus dose showed a fast moving band consistent with the BW12C-oxyhaemoglobin complex, accounting for approximately 50% of total haemoglobin. The predominant toxicities – nausea/vomiting and vein pain – were mild and did not exceed CTC grade 2. Liver31P magnetic resonance spectroscopy of patients with hepatic metastases showed no changes consistent with tissue hypoxia. The principle of combining a hypoxically activated drug with an agent that increases tissue hypoxia is clinically feasible, producing an effect equivalent to reducing tumour oxygen delivery by at least 50%. However, BW12C in combination with MMC for 5-FU-resistant colorectal cancer is not an effective regimen. This could be related to drug resistance rather than a failure to enhance cytotoxicity. © 2000 Cancer Research Campaig

    Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    Get PDF
    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-β, other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the Th1-promoting genes induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a transcription factor regulating the activation of JNK, was one of the few genes only induced by B. bifidum Z9. Neutralization of IFN-β abrogated L. acidophilus NCFM-induced expression of Th1-skewing genes, and blocking of the JNK pathway completely inhibited the expression of IFN-β. Our results indicate that B. bifidum Z9 actively inhibits the expression of genes related to the adaptive immune system in murine dendritic cells and that JPD2 via blocking of IFN-β plays a central role in this regulatory mechanism
    • …
    corecore