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Abstract: Bovine viral diarrhea virus’s (BVDV) entry into bovine cells involves attachment of virions
to cellular receptors, internalization, and pH-dependent fusion with endosomal membranes. The
primary host receptor for BVDV is CD46; however, the complete set of host factors required for virus
entry is unknown. The Madin-Darby bovine kidney (MDBK) cell line is susceptible to BVDV infection,
while a derivative cell line (CRIB) is resistant at the level of virus entry. We performed complete
genome sequencing of each to identify genomic variation underlying the resistant phenotype with
the aim of identifying host factors essential for BVDV entry. Three large compound deletions in the
BVDV-resistant CRIB cell line were identified and predicted to disrupt the function or expression
of the genes PTPN12, GRID2, and RABGAP1L. However, CRISPR/Cas9 mediated knockout of
these genes, individually or in combination, in the parental MDBK cell line did not impact virus
entry or replication. Therefore, resistance to BVDV in the CRIB cell line is not due to the apparent
spontaneous loss of PTPN12, GRID2, or RABGAP1L gene function. Identifying the functional cause
of BVDV resistance in the CRIB cell line may require more detailed comparisons of the genomes
and epigenomes.

Keywords: BVDV; CRISPR; PTPN12; GRID2; RABGAP1L; CRIB; MDBK

1. Introduction

Bovine viral diarrhea virus (BVDV; family Flaviviridae, genus pestivirus) is one of the
most widespread and economically important viral infections in cattle [1] with average
direct losses approaching $175–200/head USD [2]. Acute infection results in systemic
spread that is associated with respiratory and gastrointestinal diseases, immunosuppres-
sion, and reproductive failure [3,4]. BVDV can cross the placenta and infect the developing
fetus resulting in abortion, malformations, or the birth of immunotolerant and persistently
infected (PI) calves [5]. PI calves often have increased morbidity and mortality and are the
most important sources of virus spread in the population [6]. Effective disease control relies
on a combination of vaccination, identification and removal of PI calves, and implementa-
tion of biosecurity protocols [7]. However, diagnostic testing to identify PI cattle is labor
intensive and costly and the genetic and antigenic variability of circulating field strains
of BVDV pose challenges to the making of broadly protective vaccines [8]. Furthermore,
BVDV infection of other wild and domestic ruminants is a potential threat to the success of
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BVDV control programs [4]. As a result, BVDV remains a significant pathogen globally.
Development of novel intervention strategies could greatly improve animal welfare and
virus control efforts while enhancing animal production.

The viral infection cycle begins when the virus binds and enters susceptible host cells.
BVDV encodes three envelope glycoproteins that participate in entry: ERNS, E1, and E2.
Interactions between ERNS and negatively charged glycosaminoglycans, such as heparan
sulfate, provide the first contact of the virus with the host cells and serves to concentrate
the virus on the cell surface [9,10] and in some cases can facilitate virus entry [9,11,12].
Cellular CD46 has been identified as the primary cellular receptor for most BVDV isolates
and is recognized by viral E2 [13,14]. Receptor binding triggers virus internalization by
clathrin-dependent endocytosis [15,16]. As the endocytic vesicle matures, the combined
action of low endosomal pH and disulfide bond reduction is proposed to mediate fusion
between the virus and host membranes, resulting in the release of the viral nucleocapsid
into the host cell cytoplasm [15]. Disassembly of the viral capsid (uncoating) delivers the
viral RNA genome to the cytoplasm, completing the entry process. The complete set of
host factors required for BVDV entry remains unknown; however, targeted disruption of
any of these events could render cells resistant to infection. Elucidating critical virus-host
interactions facilitating entry will not only advance our knowledge of pestivirus infection
and pathogenesis but will also provide novel targets for intervention strategies.

Bovine kidney CRIB cells (i.e., Cells Resistant to Infection with BVDV) offer a unique
opportunity to identify additional host factors required for pestivirus entry [17,18]. CRIB
cells were originally isolated by cloning Madin-Darby bovine kidney (MDBK) cells that
survived infection with the cytopathic Singer strain of BVDV [17]. Characterization of
CRIB cells revealed they were resistant to infection by BVDV and other related pestiviruses
due to a defect in virus entry [17,18], despite the normal expression of the cellular receptor
CD46 on the cell surface [19]. Transfection of CRIB cells with BVDV RNA resulted in
the production of infectious virus, revealing that the intracellular milieu is permissive to
infection [17]. Together, these studies suggested that the entry of pestiviruses into MDBK
cells depends on a common entry factor that is absent in CRIB cells. To date, the specific
genomic changes that resulted in the resistant phenotype remain unknown. The goal of this
study was to sequence the complete genomes of MDBK and CRIB cell lines to identify and
evaluate any major genomic changes that could be responsible for the pestivirus-resistant
phenotype of CRIB cells.

2. Materials and Methods
2.1. Cell Lines and Viruses

BVDV-free Madin-Darby bovine kidney cells (MDBK; ATCC CCL-22, Lot no. 3752721,
passage 113) and CRIB cells (i.e., “Cells Resistant to Infection with BVDV”, ATCC CRL-
11883, Lot no. 100005, Reference CRIB1P35, passage 35, [17]) were obtained from the
American Type Culture Collection (ATCC; Rockville, MD, USA). Individual and triple
gene knockout (KO) clones were made in MDBK cells as described below. Cells were
maintained in minimum essential media (MEM; Gibco, Grand Island, NY, USA) supple-
mented with 10% irradiated fetal bovine serum (Atlas Biologicals, Fort Collins, CO, USA),
1× antibiotic-antimycotic (Gibco) and 2 mM L-Glutamine (Gibco) under 5% CO2 at 37 ◦C.
Cell growth rate was determined by plating 2.5 × 105 cells in triplicate in T-25 flasks. Cells
were trypsinized and counted using a Countess II automated cell counter (Invitrogen;
Carlsbad, CA, USA) every 24 h for 96 h. Cell numbers were graphed in Prism, version 6
(GraphPad Software, San Diego, CA, USA). Cells were imaged using the EVOS FL auto
microscope (Invitrogen).

Cytopathic BVDV-1a strain NADL (ATCC-VR1422) was purchased from ATCC. Cyto-
pathic BVDV strains Singer (BVDV-1a), MDA280n (BVDV-1b), IIICPE (BVDV-1b), TGAC
(BVDV-1b), 53637 (BVDV-2), and 296c (BVDV-2) were from the National Animal Disease
Center (NADC) collection in Ames, Iowa. Cytopathic BVDV strains were propagated in
MDBK cells and quantitated on bovine turbinate cells (BT; ATCC CRL 1390). The infective
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titer was determined in two replicates using an endpoint dilution assay. Viral stocks were
stored in 0.5 to 1 mL aliquots at −80 ◦C.

Non-cytopathic BVDV-2 isolate PI-92-2014 was isolated on MDBK cells from the
plasma of a calf persistently infected with BVDV [20]. The virus was passaged four times
on MDBK cells and a viral stock was prepared. The infective titer was estimated by
RT-qPCR using log10 dilutions of the virus. A standard curve was made by plotting RT-
qPCR Ct values against log10 dilutions of the NADL virus with a known infectious titer.
Linear regression analysis was performed to create a standard for estimating the titer of
non-cytopathic stocks of virus. BVDV isolates PI-31-2019 (BVDV-1a), PI-60-2019 (BVDV-
1b), PI-64-2019 (BVDV-1b), and PI-65-2019 (BVDV-1b) were tested by directly inoculating
cells with serum obtained from calves persistently infected with BVDV (unpublished
virus isolates).

2.2. Whole Genome Sequence (WGS)

The WGS of MDBK, CRIB, and KO clones was accomplished with methods as de-
scribed elsewhere [21]. Briefly, genomic DNA was used to make a 500 bp paired-end
library (TruSeq DNA PCR-Free kits, Illumina, San Diego, CA, USA) and sequenced on a
NextSeq500 (two by 150 paired-end reads, Illumina) until a minimum of 40 GB of data
with greater than Q20 quality was collected. The raw reads were filtered to remove adaptor
sequences, contaminating dimer sequences, and low-quality reads. The DNA sequence
alignment process was similar to a previous report [21]. FASTQ files were aggregated
for each sample and DNA sequences were aligned individually to the bovine reference
assembly ARS-UCD1.2 ([22] Accession ID: GCF_002263795.1. NCBI Genome ID: 82; Bos
Taurus) with the Burrows-Wheeler aligner (BWA) aln algorithm version 0.7.12, then merged
and collated with bwa sampe. The resulting sequence alignment map (SAM) files were
converted to binary alignment map (BAM) files, and subsequently sorted via SAMtools
version 0.1.18 [23]. Potential PCR duplicates were marked in the BAM files using the
Genome Analysis Toolkit (GATK) version 1.5-32-g2761da9 [24]. Regions in the mapped
dataset with small indels that would benefit from re-alignment were identified with the
GATK module RealignerTargetCreator and realigned using the module IndelRealigner.
The BAM files produced at each of these steps were indexed using SAMtools. The raw
reads were deposited at NCBI BioProject PRJNA761701.

Deletions in the genome of the CRIB cell line relative to MDBK cells were identified
with bedtools 2.27.1 to complete genomic interval comparisons and read map file manipu-
lations as detailed on this internet site for protocol sharing (link: https://www.protocols.
io/view/evaluating-large-spontaneous-deletions-in-a-bovin-bvv3n68n, accessed on 20
October 2021). Bedtools bamtobed was used to convert each cell line’s BAM file into a BED
file. Using the bedtools intersect command, reads within a cell line’s BED that intersected
with repeat regions in the RepeatMasked ARS-UCD1.2 bovine genome were removed to
create a RepeatMasked BED file. Using the RepeatMasked BED files, the bedtools intersect
command was used to remove reads in the MDBK library that overlapped with reads in
the CRIB library to create a BED file of reads unique to the MDBK genome. This BED file of
MDBK cell reads mapping to regions of the genome not covered by reads from CRIB (BED
file named “MDBK+_CRIB-.bed”) was manually screened with the Integrative Genomics
Viewer (IGV, v2.9.4), identifying three read-rich regions not populated in CRIB (Figure S1).

2.3. Annotation of RABGAP1L with Long-Read RNA Sequence Data

Ambiguity surrounding the annotation and genome assembly in the RABGAP1L gene
region was clarified by first determining the RABGAP1L RNA isoforms expressed in cattle
using full-length RNA transcript sequences produced from single-molecule, real-time
sequencing (Iso-Seq method, Pacific Biosciences platform, access date 12 March 2018). The
Hereford, Angus, and Brahman full-length RNA transcripts are available at NCBI under
BioProjects PRJNA386670 and PRJNA432857, respectively. These sequences were searched
by blastn using the RefSeq transcript for RABGAP1L (accession NM_001103263, access

https://www.protocols.io/view/evaluating-large-spontaneous-deletions-in-a-bovin-bvv3n68n
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date 12 March 2018) as the query sequence. Sequences with pairwise identity >95% were
selected and used for manual annotation of RABGAP1L on the region between 55,479,000
and 56,227,501 of chromosome 16 extracted from the ARS-UCD1.2 assembly in GenBank
(accession NC_037343.1, access date 12 March 2018). Transcript sequences from other
mammals were also aligned to this region to evaluate conservation at this locus.

2.4. RNA Sequencing

MDBK and CRIB cells were grown in triplicate to 90% confluency in 6-well culture
plates (yielding approximately 1 × 106 cells per well). Total RNA was isolated from cells in
each well using TRIzol (Life Technologies, Carlsbad, CA, USA) according to the manufac-
turer’s instructions. Genomic DNA contamination was removed using the Turbo DNA-free
kit (Thermo Fisher Scientific, Waltham, MA, USA). RNA integrity and concentration were
quantified with a 5200 Fragment Analyzer System (Agilent Technologies, Santa Clara,
CA, USA). An Illumina TruSeq stranded mRNA library preparation kit was used to con-
struct cDNA libraries, which were sequenced as 75-bp paired-end reads on an Illumina
NextSeq 500 (Illumina, San Diego, CA, USA) to the depth of approximately 25 million
reads per library.

The sequence data were processed within the OmicsBox environment (BioBam Bioin-
formatics V.1.4.11, 3 March 2019). Read quality metrics were assessed with FastQC. All
libraries passed quality checks for Per Base Sequence Quality, Per Sequence Quality Scores,
Per Base N Content, and Adapter Content. The reads were then trimmed with Trimmo-
matic (v. 0.38) to remove TruSeq3-SE adapters with sliding window trimming with a
4 bp window and 20 minimum quality. The final trimmed reads were required to have
an average quality score of at least 25 with a minimum length of 36 bp. The filtered &
trimmed output was aligned to the ARS-UCD1.2 reference bovine genome with the STAR
aligner [25] using two-pass mapping, a minimum intron length of 20 bp, a maximum intron
length and distance between mates of 1,000,000 bp, a maximum number of multiple align-
ments of 20, a maximum number of mismatches of 999, and chimeric reads were excluded
from the alignment. HTSeq (v. 0.9.0 [26]) was used to count aligned sequencing reads
with the quantification level set to gene, with overlap mode set to union, strand-specific
switch set to reverse, and with a minimum mapping quality of 10. Pairwise differential
expression analyses between MDBK and CRIB libraries were conducted with edgeR [26,27]
with libraries normalized using the trimmed mean of M values method (TMM) [28].

2.5. Generation of MDBK Single and Triple Knockout (KO) Clones
2.5.1. gRNA Design and Production

Candidate gRNAs were designed using Cas-Designer [29] and construction oligos
were purchased from Integrated DNA Technologies (IDT; San Jose, CA, USA). Oligos were
annealed by heating to 95 ◦C for 5 min and cooling to room temperature over a span of one
hour. The gRNA transcription vector (pDR274 for btGRID2 and RABGAP1L or pDR274-SP6
for PTPN12) was linearized with BsaI (New England Biolabs, NEB; Ipswich, MA, USA) and
purified using the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany). The annealed
oligos were ligated into the linearized transcription vector using T4 DNA Ligase (NEB) and
transformed into TOP10 (Invitrogen, Waltham, MA, USA) competent cells. Two milliliters
of 2xYT media supplemented with kanamycin was inoculated with a single clone and
grown overnight at 37 ◦C. The plasmid was purified from the overnight culture using the
Qiagen Miniprep Kit. Transcription plasmids were linearized with DraI (New England
Biolabs) and amplified using Accustart Taq DNA Polymerase HiFi (Quanta Biosciences,
Gaithersburg, MD, USA) using the following primers and cycling program: pDR274 F
(5′-TCCGCTCGC-ACCGCTAGCT-3′) and pDR274 R (5′-AGCACCGACTCGGTGCCAC-
3′); 1 cycle (95 ◦C, 2 min), 35 cycles of (95 ◦C, 30 s; 48 ◦C, 15 s; 68 ◦C, 15 s), 1 cycle
(68 ◦C, 30 s). Once completed, the amplification reactions were treated with RNAsecure
(Thermo Fisher Scientific) following the manufacturer’s recommendations and purified
using the QIAquick Gel Extraction Kit (Qiagen). These amplicons were used as template
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for transcription using the MEGAshortscript T7 Transcription Kit (Thermo Fisher Scientific)
for GRID2 and RABGAP1L or HiScribe SP6 RNA Synthesis Kit (NEB) for PTPN12 and
purified with the RNeasy Mini Kit (Qiagen), following manufacturer’s instructions.

2.5.2. Cas9 mRNA Preparation

pT3Ts-nCas9n plasmid was linearized with XbaI (NEB), treated with RNAsecure
(Thermo Fisher Scientific) and purified using the QIAquick Gel Extraction Kit (Qiagen).
In vitro Cas9 mRNA transcription was performed using the mMESSAGE mMACHINE T3
Kit (Thermo Fisher Scientific) followed by A-tailing using a Poly(A) Tailing Kit (Thermo
Fisher Scientific). These transcripts were purified with the RNeasy Mini Kit (Qiagen),
following manufacturer’s instructions.

2.5.3. Tissue Culture and Transfection for Single KO Clones

MDBK cells were briefly maintained at 38.5 ◦C at 5% CO2 in DMEM supplemented
with 10% fetal bovine serum, 100 I.U./mL penicillin and streptomycin, 2 mM L-Glutamine
and 10 mM Hepes. Once the cells reached 80% confluency, they were spilt 1:2 and harvested
the next day at 70–80% confluency. Approximately 600,000 cells were suspended in “R”
Buffer (Life Technologies) and electroporated with the Neon Transfection system (Life
Technologies) using the 100 uL tips and the following parameters: input voltage: 1600 V;
pulse width: 20 ms; pulse number: 1. The transfection system delivered 1 µg of the
appropriate gRNA(s), 2 µg nCas9n mRNA per gRNA, and 0.2 nMol of the appropriate
single-stranded oligo donor (ssODN). Guide RNAs and ssODN are listed in Table 1.
Transfected cells were dispersed into one well of a 6-well plate with 2 mL DMEM media
and cultured for three days at 30 ◦C.

Table 1. Guide RNAs and single-stranded oligo donors used in gene-editing.

Gene gRNA(s) (5′-3′) ssODN (5′-3′)

PTPN12 GAUUUUUGGAGGAUGAUAU
GACCTTTAGCAAATACGGTAATAGATTTTTGGA
GGATGATATAAAGCTTTGGGAGTACAAT-
GTTGTAGTAAGTATTGTATGAAATGGCAT

GRID2 GGAUCCAUUUGCUCAGAAUA
TATCTTCAACATTGTGTGATCCAAAGGATCCAT
TTGCTCAGTAAAGCTTAATATGGAG-
GTATATTCTAAGCACCCAGATATTTCTCTAAG

RABGAP1L

Targeting 5′:
GGGAUUAUGCAGAAGAGGU
Targeting 3′:
GGAAUGUCACGUAGGCCUA

CACAAGAAATTATTAAGAGTAATTTTGGGATTA
TGCAGAAGAAAGCTTCTATGGCCTATCCTTC-
CATGCAACCAATAATTCTCTTTCCCT

Abbreviations: gRNA, guide RNA; ssODN, single-stranded oligo donor.

2.5.4. Single-Cell Derived Clonal Isolation and Genotyping

Four days after transfection, cells were seeded onto 10 cm plates at a density of
30 cells/plate and cultured until individual colonies reached approximately 5 mm in
diameter. The colonies were aspirated and replicate plated on 48- and 96-well plates. The
96-well plates were incubated for 2 days prior to lysis. Cells were resuspended in 20 µL of
1X PCR compatible lysis buffer (10 mM Tris-Cl pH 8.0, 2 mM EDTA, 0.45% Triton X-100
(v/v), 0.45% Tween-20 (v/v)) freshly supplemented with 200 µg/mL Proteinase K. The
lysates were incubated in a thermal cycler using the following program: 55 ◦C for 60 min,
95 ◦C for 15 min.

2.5.5. Mutation Detection

Identification of PTPN12 and GRID2 KO was performed by PCR amplification (AccuS-
tart II GelTrack PCR SuperMix, Quanta Biosciences, Beverly, MA, USA) with 1 µL of the
cell lysate as template using the following primers and cycling program: PTPN12 NJ F1 (5′-
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ACCATGTTTCACCAGAAGCTGA-3′) and PTPN12 NJ R1 (5′-ACAAGACAACCTAGCCA
TCAGT-3′); or GRID2 NJ F1 (5′-ACTTGGATGTGGGCTAAGCA-3′) and GRID2 NJ R1
(5′-CTGAATGCAATGCCACCAGA-3′); 1 cycle (95 ◦C, 2 min), 35 cycles of (95 ◦C, 20 s;
60 ◦C, 20 s; 72 ◦C, 45 s), 1 cycle (72 ◦C, 5 min). Amplicons were then cut with HindIII
(NEB) and visualized using agarose gel electrophoresis. Clones homozygous by RFLP for
GRID2 and PTPN12 KO alleles were verified by Sanger sequencing (ACGT, Germantown,
MD, USA).

Identification of the RABGAP1L deletion was performed by PCR amplification as
described above with 1 µL of the cell lysate as template using the following primers and
cycling program: RABGAP1L 5′ NJ F1 (5′-GCCCAGCAATCCCTCTTTTG-3′) and RAB-
GAP1L 3′ NJ R1 (5′- ACCTTTCATCTCTTGTGCCC-3′); 1 cycle (95 ◦C, 2 min), 35 cycles
of (95 ◦C, 20 s; 60 ◦C, 20 s; 72 ◦C, 45 s), 1 cycle (72 ◦C, 5 min). PCR amplification of the 5′

junction was conducted as described above with 1 µL of the cell lysate as template using
the following primers and cycling program: RABGAP1L 5′ NJ F1 (5′-GCCCAGCAA-
TCCCTCTTTTG-3′) and RABGAP1L 5′ NJ R1 (5′-AGACCCCTGGATCAGTGGTT-3′);
1 cycle (95 ◦C, 2 min), 35 cycles of (95 ◦C, 20 s; 60 ◦C, 20 s; 72 ◦C, 45 s), 1 cycle (72 ◦C,
5 min). PCR amplification of the 3′ junction was conducted as described above with 1 µL
of the cell lysate as template using the following primers and cycling program: RAB-
GAP1L 3′ NJ F1 (5′- AACCAAGTTGAATTTTGCAGTG-3′) and RABGAP1L 3′ NJ R1 (5′-
ACCTTTCATCTCTTGTGCCC-3′); 1 cycle (95 ◦C, 2 min), 35 cycles of (95 ◦C, 20 s; 60 ◦C,
20 s; 72 ◦C, 45 s), 1 cycle (72 ◦C, 5 min).

2.5.6. Selection of Clones for Downstream Testing

Two Sanger-sequence confirmed clones with similar growth rates and morphological
characteristics to the parental MDBK cell line were selected for virus susceptibility testing.
One KO clone from each gene of interest was further selected for WGS as described above.

2.5.7. Generation of Triple Gene KO

One colony that was homozygous for the RABGAP1L KO was expanded and used
as the parental line for the creation of the triple KO cell line. This clone was transfected
as described above using the Neon transfection system (Life Technologies) to deliver 1 ug
GRID2 gRNA, 1 ug PTPN12 gRNA, 4 ug nCas9n mRNA, 0.2 nmol GRID2 g2 HD3-KO
ssODN and 0.2 nMol PTPN12 g3 HD3-KO ssODN (Table 1). Single-cell derived clones
were screened for desired mutations as described above. One clone was selected for virus
susceptibility testing and WGS as described above.

2.6. SDS-PAGE and Immunoblotting

Whole-cell lysates were prepared from cells grown in 6-well culture plates for 48 h.
Cells were washed with phosphate-buffered saline (PBS) and suspended in RIPA lysis
buffer [150 mM sodium chloride, 1.0% Triton X-100, 0.5% Deoxycholic Acid, 0.1% SDS,
50 mM Tris, pH 8.0]. Cell lysate was incubated on ice for 30 min, sonicated, and then
clarified by centrifugation at 18,000× g at 4 ◦C for 5 min. Protein concentrations were
quantified using a Bicinchoninic Acid (BCA) protein assay kit (Thermo Fisher Scientific).
Samples were diluted to 40 µg in a commercial sample buffer with lithium dodecyl sulfate
and dithiothreitol and used per the manufacturer’s instructions (Thermo Fisher Scientific).
Samples were heated to 70 ◦C for 10 min and loaded on 4–12% precast polyacrylamide
Bis-Tris Plus gels (Thermo Fisher Scientific) at run 160 volts for approximately 45 min in
2-(N-morpholino)ethane-sulfonic acid (MES) SDS running buffer (Thermo Fisher Scientific).
After electrophoresis, proteins were transferred onto a polyvinylidene difluoride membrane
(Immobilon-P; Millipore) and nonspecific antibody binding to the membrane was blocked
by incubating 2 h in 5% nonfat dry milk (NFDM) or 2% bovine serum albumin (BSA) in Tris-
buffered saline-0.1% Tween 20 (TBS-T) depending on the antibody used (see details below).
Membranes were then incubated with primary antibody overnight at 4 ◦C with gentle
agitation. The antibodies used were anti-GRID2 (Abcam, Cambridge, United Kingdom,
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catalog no. ab190358) at a 1:1000 dilution in 2% BSA in TBS-T; anti-PTPN12 (Thermo Fisher
Scientific, catalog no. PA5-27733) diluted 1:5000 in 5% NFDM in TBS-T; and anti-GAPDH
(Abcam catalog no. ab181603) diluted 1:10,000 in 5% NFDM in TST-T. The following day,
membranes were washed three times for 10 min each with TBS-T then incubated with goat
anti-rabbit HRP secondary antibody (Thermo Fisher Scientific catalog no. 32460) at a 1:1000
dilution in the same buffer as the primary antibody for 1 hr at room temperature. Blots
were then washed three times for 10 min each with TBS-T prior to detection. For detection,
the immunoblot was incubated in a chemiluminescent substrate (Amersham ECL Prime,
GE Healthcare) for 5 min and imaged (ChemiDoc, Bio-Rad Laboratories, Inc. Hercules,
CA, USA).

2.7. Multistep Virus Growth Curves

Cells were seeded in 48-well plates at a density of 5 × 104 cells per well in 200 µL
MEM supplemented with 1x antibiotic-antimycotic (Gibco brand, Thermo Fisher Scientific)
and 2 mM L-Glutamine (Gibco), and 3.75% horse serum (ATCC, cat no. ATCC 30-2040)
and incubated 24 h at 37 ◦C with 5% CO2. Virus was then added to plates at an MOI of
0.01 in 100 µL MEM supplemented with 1x antibiotic-antimycotic and 2 mM L-Glutamine,
bringing the final horse serum concentration to 2.5%. An input plate (t = 0 h post-infection)
was frozen at −80 ◦C immediately after infection and the remaining plates were incubated
at 37 ◦C with 5% CO2 for 24, 48, 72 or 96 h. Plates were frozen at −80 ◦C at the indicated
time post-infection. Plates were thawed at 37 ◦C and cells were collected and transferred
to a 1.5 mL microcentrifuge tube, vortexed, and frozen at −80 ◦C. Cell were thawed a
second time, vortexed, and centrifuged at 18,000× g for three minutes at 4 ◦C to pellet
cellular debris. The supernatant was transferred to a new 1.5 mL microcentrifuge tube and
stored at −80 ◦C until processed for RNA. Trizol LS (Life Technologies) was used to extract
RNA per the manufacturer’s instructions. Viral RNA was quantified by RT-qPCR with a
BVDV specific primer and probe set [30]. Cyclic amplification reactions were carried out
in a 25 µL reaction containing: 4.5 mM MgCl2, 400 µM each dNTP, 0.4 µM of each primer,
0.2 µM probe, 1 µL enzyme mix containing reverse transcriptase (RT) and a hot start Taq
polymerase (OneStep RT-PCR kit, Qiagen Inc., Venlo, The Netherlands), and 5 µL RNA.
Cycling conditions were as follows: reverse transcription for 30 min at 50 ◦C, inactivation
of RT enzyme and activation of Taq polymerase for 15 min at 95 ◦C followed by 40 cycles
of 94 ◦C for 30 sec, 55 ◦C for 60 sec and 72 ◦C for 60 s. Cycle threshold (Ct) values less than
38 were considered positive. Positive, negative, no template, and extraction controls were
included on each run. The fold increase in viral RNA compared to the input concentration
was determined with the delta Ct method [31] and graphed in Prism, version 6 (GraphPad
Software, San Diego, CA, USA).

3. Results
3.1. Identification of Three Large Genomic Deletions in the BVDV-Resistant CRIB Cell Line

Propagation of cell lines frequently results in chromosomal deletions and rearrange-
ments that represent potential candidates for the loss of viral susceptibility observed in the
CRIB cell line. Therefore, our first analysis focused on identifying homozygous deleted
regions present in the CRIB cell line compared to the MDBK parent line since these could po-
tentially cause the altered phenotype. Whole genome sequence of MDBK (48 Gb) and CRIB
(62 Gb) cells was generated and aligned to the bovine reference assembly ARS-UCD1.2,
with an average genome coverage of approximately 17- and 22-fold, respectively based
on a 2.8 Gb genome. Using open-source software and custom scripts, major homozygous
deleted regions of the CRIB cell line were identified by comparing the mapped read density
between WGS libraries of CRIB and MDBK cell lines (see Methods Section 2.2 Whole
genome sequencing, Figure S1). Three homozygous deleted regions were identified on
three different chromosomes, each spanning more than 1 kb (Table S1). Manual inspection
of these regions aligned to the bovine reference assembly revealed that all three regions
consist of compound heterozygous deletions. These occur where a deletion on one copy of
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the chromosome overlaps a different deleted region on the other copy of the chromosome to
produce a smaller region of homozygous loss. The affected regions were on chromosomes
4, 6, and 16 and were predicted to disrupt the genes PTPN12, GRID2, and RABGAP1L,
respectively (Figure 1).
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The PTPN12 gene on chromosome 4 encodes the protein tyrosine phosphatase non-
receptor type 12 protein. The CRIB cell line PTPN12 gene contained a 57,648 bp deletion on
one chromosome spanning exons 2–11, and a 123,042 bp deletion spanning exons 3–18 on
the other chromosome. These heterozygous deletions overlapped resulting in a 33,808 bp
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homozygous deleted region predicted to remove exons 3–11 of PTPN12 (Figure 1A) and
together suggest that no functional protein would be produced in CRIB cells.

The GRID2 gene on chromosome 6 encodes the glutamate ionotropic receptor delta
type subunit 2 protein. The parental MDBK cell line contained a 472,427 bp deletion on
one chromosome that spanned exons 5–12 of GRID2. The CRIB cell line acquired a nested
deletion of 63,200 bp on the other chromosome resulting in a homozygous deleted region
of 63,200 bp within intron 8 of GRID2 (Figure 1B). Thus, at least one copy of the gene is
unlikely to produce a functional protein, while the homozygous deletion in the intron
would have unknown effects on protein structure or abundance.

The RABGAP1L gene on chromosome 16 encodes the RAB GTPase activating protein
1 like protein. Annotation of this gene in the bovine reference assembly (ARS-UCD1.2)
includes two adjacent loci labeled as RABGAP1L in the same transcriptional direction
(Figure 1C). The two loci do not share substantial sequence homology, and thus do not
appear to be evidence of a gene duplication. Rather, analysis of other mammalian tran-
scripts from this gene along with long read isoform sequencing of cattle tissues indicates
the presence of multiple isoforms as illustrated in Figure 1C, some of which appear to be
restricted to one or the other annotated gene, but most of which encompass both annotated
loci. This indicated that the annotation is in error and a single RABGAP1L gene lies at this
position of chromosome 16. Using this single RABGAP1L gene annotation model consistent
with other mammalian species, one copy of the gene in CRIB cells has a 169,390 bp deletion
removing exons 17–19, and the other copy has a 161,794 bp overlapping deletion removing
exons 19–26. The overlap defines a 69,384 bp homozygous deletion that includes exon 19
(Figure 1D). Neither allele would be expected to produce a functional full-length protein.
The biological significance of shorter transcripts containing only upstream or downstream
exons is unknown.

Cellular localization, expression, and functions for the three genes have been reported
in other mammals (Table 2). Research documenting a role for these genes in virus entry
has not been reported; however, roles in endocytosis or cell signaling could be relevant to
the observed phenotype in CRIB cells.

Table 2. Gene functions.

Gene Cellular Localization
and Expression Gene Function

PTPN12 Cytosol; ubiquitously
expressed

Member of the protein tyrosine
phosphatase (PTP) family; plays role

in cytoskeletal structure, cell
adhesion, cell shape and mobility,

and cell-cell junctions [32]

GRID2
Plasma membrane;

predominantly expressed in the
cerebellum

Ionotropic glutamate receptor in the
mammalian brain; plays a role in

synaptogenesis, synaptic plasticity,
and endocytosis of the AMPA

receptor [33].

RABGAP1L Cytoplasm, endosome;
ubiquitously expressed

Rab GTPase activating protein 1 like;
plays a role in endocytosis, endosome

maturation, and autophagosome
formation [34,35].

3.2. Loss of PTPN12 Protein Expression Does Not Significantly Impact BVDV Infection in MDBK
Cells

The spontaneous deletions on chromosome 4 in CRIB cells were first examined for their
potential effects on the relative mRNA transcript abundance of PTPN12 and surrounding
genes compared to MDBK (Figure 2A,B). The abundance of PTPN12 mRNA and adjacent
LOC100848405 ncRNA was reduced by 58% and 57%, respectively, in the CRIB cells
compared to MDBK. Conversely, the adjacent RSBN1L RNA expression was two-fold
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higher in CRIB cells compared to MDBK cells. The abundance of RNA transcripts from
four other genes in the area were approximately the same between cell lines.
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Figure 2. Knockout of PTPN12 does not significantly impact BVDV infection in MDBK cells. Panel (A), map of bovine
PTPN12 and surrounding genes: blue arrows, genes (open reading frames); vertical blue lines, coding regions (exons);
black lines, heterozygous deletions in two alleles of PTPN12 on chromosome 4; red square, homozygous deleted region
(33,808 bp); red arrow, exon target of PTPN12 gRNA. Panel (B), RNASeq analyses of relative RNA transcript abundance in
MDBK and CRIB cells (trimmed mean of M (TMM) normalization value). Panel (C), western blot of SDS-PAGE for PTPN12
and GAPDH (loading control). Panel (D), Multistep virus growth curve. Cells were infected with BVDV strain NADL
(MOI 0.01). Cells were collected and processed 0–96 h post-infection for quantitation of viral RNA using RT-qPCR. Results
represent the mean ± standard deviation (n = 3).

The potential for the deletions within the CRIB PTPN12 gene to interfere with viral
entry or replication was directly tested by creation of MDBK PTPN12 KO clones. These
were generated by the introduction of a premature termination codon and a frameshift
mutation in exon 4 using CRISPR/Cas9 technology to eliminate all known splice variants
(Figure 2A). PTPN12 protein expression was assessed by an anti-PTPN12 immunoblot,
which confirmed loss of PTPN12 protein expression in CRIB cells and PTPN12 KO clones 1
and 2 (Figure 2C). To determine whether loss of PTPN12 impacts virus replication kinetics,
MDBK, CRIB, and PTPN12 KO cells were infected with BVDV at a low MOI and viral RNA
replication was monitored over time. Loss of PTPN12 did not significantly affect viral
replication kinetics in MDBK cells (Figure 2D). Thus, disruption of PTPN12 alone was not
sufficient to affect BVDV infection of MDBK cells.

3.3. Loss of GRID2 Protein Expression Does Not Significantly Impact BVDV Infection in MDBK
Cells

MDBK appeared to have lost one of its GRID2 alleles prior to selection of the CRIB
cell line (Allele 1 deletion, Figure 3A). During selection, a nested deletion resulted in a
homozygous deleted region on chromosome 6 in CRIB cells that fell entirely within a
non-coding region of GRID2 (intron 8, Figure 3A). However, intronic deletions may be
associated with variability in gene expression [36]; thus, mRNA transcript abundance was
compared between MDBK and CRIB cells. GRID2 mRNA expression was reduced by 50%
in CRIB cells compared to MDBK cells (Figure 3B). Evaluation of GRID2 protein levels by
immunoblot revealed GRID2 protein expression was also consistently reduced in CRIB
cells compared to MDBK cells (Figure 3C). To determine whether altered GRID2 expression
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impacts virus susceptibility in CRIB cells, MDBK GRID2 KO clones were generated by
introducing a premature termination codon and frameshift mutation in exon 6 (Figure 3A).
The GRID2 KO was confirmed by Sanger and WGS comparisons and by an anti-GRID2
immunoblot (Figure 3C). Infection of GRID2 KO clones revealed that loss of GRID2 did not
significantly impact viral replication kinetics in MDBK cells (Figure 3D). Therefore, it is
unlikely that the reduction in GRID2 expression alone contributes to the BVDV resistant
phenotype in CRIB cells.
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Figure 3. Knockout of GRID2 does not significantly impact BVDV infection in MDBK cells. Panel (A) map of bovine GRID2
and surrounding genes: blue arrows, genes (open reading frames); vertical blue lines, coding regions (exons); black lines, het-
erozygous deletions in two alleles of GRID2 on chromosome 6; red square, homozygous deleted region (63,200 bp); red arrow,
exon target of GRID2 gRNA. Panel (B) Relative RNA expression levels in MDBK and CRIB cells (TMM normalization value).
Pane (C) western blot of SDS-PAGE for GRID2 and GAPDH (loading control). Bovine cerebellum was used as a positive con-
trol for GRID2 expression. Panel (D) Multistep virus growth curve. Cells were infected with BVDV strain NADL (MOI 0.01).
Cells were collected and processed 0–96 h post-infection for quantitation of viral RNA using RT-qPCR. Results represent the
mean ± standard deviation (n = 3).

3.4. Disruption of the RABGAP1L Gene Does Not Significantly Impact BVDV Infection in
MDBK Cells

The homozygous deleted region on chromosome 16 is predicted to remove exon 19
from both alleles encoding the RABGAP1L gene (Figure 4A). Moreover, each allele is
missing additional exons from non-overlapping deletions such that neither allele would
be expected to produce a functional full-length protein. The combined deletions did
not substantially alter the abundance of RNA transcripts produced from this gene in
CRIB cells (Figure 4B). However, the incorrect annotation of this gene in the reference
genome used to quantify transcript abundance raises questions about the accuracy of this
measurement. Therefore, due to annotation inaccuracies, complexities of the RABGAP1L
isoform variants (Figure 1C), and a lack of commercial antibodies available to measure
bovine RABGAP1L protein expression, we chose to make a 69 kb homozygous deletion
in MDBK cells encompassing the entire haploid region found in CRIB cells (red box in
Figure 4A). The homozygous deletion was confirmed by Sanger sequencing and WGS
comparisons. However, deletion of this region of chromosome 16 did not significantly
impact viral replication kinetics in MDBK cells (Figure 4C). Therefore, disruption of the
RABGAP1L gene alone did not replicate the BVDV-resistant phenotype of CRIB cells.



Viruses 2021, 13, 2147 12 of 17

Viruses 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 

3.4. Disruption of the RABGAP1L Gene Does Not Significantly Impact BVDV Infection in 
MDBK Cells 

The homozygous deleted region on chromosome 16 is predicted to remove exon 19 
from both alleles encoding the RABGAP1L gene (Figure 4A). Moreover, each allele is miss-
ing additional exons from non-overlapping deletions such that neither allele would be 
expected to produce a functional full-length protein. The combined deletions did not sub-
stantially alter the abundance of RNA transcripts produced from this gene in CRIB cells 
(Figure 4B). However, the incorrect annotation of this gene in the reference genome used 
to quantify transcript abundance raises questions about the accuracy of this measurement. 
Therefore, due to annotation inaccuracies, complexities of the RABGAP1L isoform vari-
ants (Figure 1C), and a lack of commercial antibodies available to measure bovine 
RABGAP1L protein expression, we chose to make a 69 kb homozygous deletion in MDBK 
cells encompassing the entire haploid region found in CRIB cells (red box in Figure 4A). 
The homozygous deletion was confirmed by Sanger sequencing and WGS comparisons. 
However, deletion of this region of chromosome 16 did not significantly impact viral rep-
lication kinetics in MDBK cells (Figure 4C). Therefore, disruption of the RABGAP1L gene 
alone did not replicate the BVDV-resistant phenotype of CRIB cells. 

  
Figure 4. Disruption of the RABGAP1L gene does not significantly impact BVDV infection in MDBK 
cells. Panel (A), map of bovine RABGAP1L and surrounding genes: blue arrows, genes (open read-
ing frames); black lines, heterozygous deletions in two alleles of RABGAP1L on chromosome 16; 
light red deletion block, homozygous deleted region (69,384 bp); red block, CRISPR/Cas9-mediated 
homozygous deletion. Shown is the corrected annotation for RABGAP1L based on IsoSeq data (see 
methods and Figure 1C). Panel (B), Relative RNA expression levels in MDBK and CRIB cells (TMM 
normalization value). Panel (C), Multistep virus growth curve. Cells were infected with BVDV strain 
NADL (MOI 0.01). Cells were collected and processed 0–96 h post-infection for quantitation of viral 
RNA using RT-qPCR. Results represent the mean ± standard deviation (n = 3). 

3.5. Triple KO of PTPN12, GRID2, and RABGAP1L Genes Does Not Impact BVDV Infection in 
MDBK Cells 

Individually, disruption of the three genes impacted by the three largest deletions in 
the CRIB cell line appeared to have no effect on viral entry or replication, but the experi-
ments did not rule out the possibility that an interaction between the deletions might pro-
duce the observed resistance to viral infection. Therefore, triple KO clones were generated 
by transfecting the RABGAP1L KO cells with gRNAs and ssODN for PTPN12 and GRID2. 
The efficiency of the triple KO was low and often led to a change in cell morphology and 
growth (data not shown). As a result, only one single-cell derived clone was generated for 

CRISPR/Cas9-mediated deletion

50 kb
GPR52 LOC101908155

ncRNA

Allele 1 deletion
Allele 2 deletion

Homozygous deleted region

CACYBP

MRPS14
Chr16:55,475,000 Chr16:56,282,100 

RABGAP1L

C. 

MDBK CRIB

RABGAP1L 240 334

GPR52 17 20

CACYBP 5216 5428

MRPS14 893 950

B. 
Relative RNA Expression

A. 

0 24 48 72 96
0.1

1

10

100

1000

Hours Post Infection

Fo
ld

 C
ha

ng
e 

Vi
ra

l R
NA

 

MDBK
CRIB
Rabgap1L LD 1
Rabgap 1L LD 2

Figure 4. Disruption of the RABGAP1L gene does not significantly impact BVDV infection in MDBK cells. Panel (A), map of
bovine RABGAP1L and surrounding genes: blue arrows, genes (open reading frames); black lines, heterozygous deletions
in two alleles of RABGAP1L on chromosome 16; light red deletion block, homozygous deleted region (69,384 bp); red block,
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deviation (n = 3).

3.5. Triple KO of PTPN12, GRID2, and RABGAP1L Genes Does Not Impact BVDV Infection in
MDBK Cells

Individually, disruption of the three genes impacted by the three largest deletions
in the CRIB cell line appeared to have no effect on viral entry or replication, but the
experiments did not rule out the possibility that an interaction between the deletions
might produce the observed resistance to viral infection. Therefore, triple KO clones
were generated by transfecting the RABGAP1L KO cells with gRNAs and ssODN for
PTPN12 and GRID2. The efficiency of the triple KO was low and often led to a change in
cell morphology and growth (data not shown). As a result, only one single-cell derived
clone was generated for downstream testing. The protein expression levels of PTPN12 and
GRID2 genes were assessed in this clone by immunoblot (Figure 5A) and all three mutations
were confirmed by Sanger and WGS comparisons. The triple KO cells were similar in
morphology but appeared slightly larger in size than MDBK cells (Figure 5B) and grew
with similar kinetics (Figure 5C). However, loss of GRID2, PTPN12, and RABGAP1L did not
affect viral replication kinetics when infected with various BVDV isolates (Figure 5D,E).
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Figure 5. Triple KO of PTPN12, GRID2, and RABGAP1L genes does not impact BVDV infection in MDBK cells. Panel (A)
western blot of SDS-PAGE for PTPN12, GRID2, and GAPDH (loading control). Panel (B) MDBK and MDBK-TKO cell
morphology (10x). Panel (C) Cell growth in T-25 flasks. Panel (D) Multistep virus growth curve. Cells were infected with
BVDV strain NADL (MOI 0.01). Cells were collected and processed 0–96 h post-infection for quantitation of viral RNA using
RT-qPCR. Results represent the mean ± standard deviation (n = 3). Panel (E) Cells were infected with various cytopathic
(cp) and non-cytopathic (ncp) BVDV isolates (MOI = 0.01) and collected at 0 and 96 h post-infection for quantitation of viral
RNA using RT-qPCR. Results represent means at 96 h ± standard deviation (n = 3).

4. Discussion

Comparative genome analyses of BVDV-susceptible MDBK cells and BVDV-resistant
CRIB cells were completed with the goal of identifying novel host factors required for
BVDV entry. We identified three large homozygous deleted regions impacting genes on
chromosomes 4, 6 and 16 that represented obvious viable candidates for affecting viral
susceptibility. However, knocking out these genes individually or in combination did not
reproduce the CRIB phenotype and suggests these genes are not necessary for BVDV entry
or replication in the MDBK cell line.

The strength of this study was the ability to use genome wide analyses and gene
editing to target the disruption of candidate genes in the parent MDBK cell line in order to
directly test hypotheses of gene function. We used the CRISPR/Cas 9 system consisting of a
single polypeptide endonuclease Cas9 complexed with a guide RNA (gRNA) to KO target
genes in the MDBK cell line. This technology has been used to create precise mutations in
target genes [37,38] to evaluate function of putative disease resistance alleles and improve
animal welfare [39–42]. However, this study also had two main weaknesses. First, the KO
strategy employed for two of the three genes (PTPN12 and GRID2) removed activity of
the target genes but did not precisely recreate the same deletion observed in CRIB cells.
Therefore, we were only able to assess the requirement of the genes directly impacted
by these deletions. It is possible that these large deletions disrupt the regulation of other
genes or non-coding RNAs, thus impacting virus susceptibility. On the other hand, the
KO strategy for RABGAP1L included a large region spanning the entire haploid region
identified in CRIB cells. Thus, the large deletion impacting the coding region of RABGAP1L
can be ruled out as the causative mutation leading to pestivirus resistance in CRIB cells.

The second weakness was limiting the focus to large deletions resulting in homozy-
gous deleted genome segments. It is possible that compound deletions that do not overlap
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could still eliminate gene function and be involved in the phenotype. In addition, other vari-
ants including small deletions affecting coding regions; missense, nonsense, and frameshift
mutations; and mutations affecting splice sites could underlie the resistance phenotype.
There are currently only a few variant calling algorithms used for detecting differences be-
tween closely related genomes and it is not clear how best to prioritize their output [43–45].
Furthermore, technical challenges related to reference genome quality, annotation methods,
sequencing artifacts, variation in read coverage depth, and sequence repeats make it diffi-
cult to detect true functional variants from spurious sequence differences and assembly
errors. Various filters can be applied to the data; however, results can differ substantially
between filtering methods. These technical limitations make smaller functional variants
difficult to detect. Ideally, future work could use a combination of computational strategies,
short- and long-read RNA sequencing data, and methods to detect epigenetic changes [46]
in effort to help identify and rank variants to be evaluated.

Isolating additional BVDV-resistant MDBK clones may further aid in the identification
of genes or biological pathways essential for BVDV infection. In our study, the true func-
tional change leading to resistance may have been obscured by lack of access to the exact
parental MDBK cell line and passage number used to select the resistant CRIB clone as well
as the fact that the CRIB-1 clone obtained from ATCC for sequencing was at a relatively
high passage (passage 37). Thus, there could have been genetic drift in both the MDBK
and CRIB cell lines from the accumulation of additional changes (chromosomal rearrange-
ments or point mutations) through continued passages. Whole genome sequencing of
matched parental MDBK and new, independently selected BVDV-resistant CRIB clones may
therefore reduce the number of variants detected between cells for downstream evaluation.

5. Conclusions

The changes that led to the development of the resistant phenotype in CRIB cells
remain to be determined but are likely to be classified as either genetic or epigenetic
perturbations to the cellular system. Although the experiments described here did not
identify these changes, they tested the three observable, large deletions that have accrued
in the CRIB cell line relative to the MDBK cell line, and we report them in detail to serve
as a guide for future studies. More complex analyses of smaller deletions, insertions,
and loss or gain of function mutations combined with global RNA expression data will
be needed to reveal and rank additional candidate genes that may play a role in BVDV
resistance. Generation and characterization of additional BVDV-resistant CRIB clones may
also aid in the identification of genes, epigenetic factors, and biological pathways essential
for pestivirus entry. Successful identification of such factors will significantly contribute
to our understanding of host, tissue, and cell tropism and further delineate the complex
nature of BVDV pathogenesis. In addition, it could reveal additional host targets for novel
intervention strategies.
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