112 research outputs found

    Biofilm Origin of Clay-Coated Sand Grains

    Get PDF
    The presence of clay-sized particles and clay minerals in modern sands and ancient sandstones has long presented an interesting problem, because primary depositional processes tend to lead to physical separation of fine- and coarse-grained materials. Numerous processes have been invoked to explain the common presence of clay minerals in sandstones, including infiltration, the codeposition of flocculated muds, and bioturbation-induced sediment mixing. How and why clay minerals form as grain coats at the site of deposition remains uncertain, despite clay-coated sand grains being of paramount importance for subsequent diagenetic sandstone properties. We have identified a new biofilm mechanism that explains clay material attachment to sand grain surfaces that leads to the production of detrital clay coats. This study focuses on a modern estuary using a combination of field work, scanning electron microscopy, petrography, biomarker analysis, and Raman spectroscopy to provide evidence of the pivotal role that biofilms play in the formation of clay-coated sand grains. This study shows that within modern marginal marine systems, clay coats primarily result from adhesive biofilms. This bio-mineral interaction potentially revolutionizes the understanding of clay-coated sand grains and offers a first step to enhanced reservoir quality prediction in ancient and deeply buried sandstones

    Clay coated sand grains in petroleum reservoirs: understanding their distribution via a modern analogue

    Get PDF
    Clay-coated grains can inhibit ubiquitous, porosity-occluding quartz cement in deeply buried sandstones and thus lead to anomalously high porosity. A moderate amount of clay that is distributed as grain coats is good for reservoir quality in deeply buried sandstones. Being able to predict the distribution of clay-coated sand grains in petroleum reservoirs is thus important to help find and exploit anomalously good reservoir quality. Here we have adopted a high-resolution, analogue approach, using the Ravenglass Estuary marginal-shallow marine system, in NW England, U.K. Extensive geomorphic mapping, grain-size analysis, and bioturbation-intensity counts were linked to a range of scanning electron microscopy techniques to characterize the distribution and origin of clay-coated sand grains in surface sediment. Our work shows that grain coats are common in this marginal–shallow marine system, but they are heterogeneously distributed as a function of grain size, clay fraction, and depositional facies. The distribution and characteristics of detrital-clay-coated grains can be predicted with knowledge of specific depositional environment, clay fraction percentage, and grain size. The most extensive detrital-clay-coated grains are found in sediment composed of fine-grained sand containing 3.5 to 13.0% clay fraction, associated with inner-estuary tidal-flat facies. Thus, against common convention, the work presented here suggests that, in deeply buried prospects, the best porosity might be found in fine-grained, clay-bearing inner-tidal-flat-facies sands and not in coarse, clean channel-fill and bar facies

    Improved imaging and analysis of chlorite in reservoirs and modern day analogues: new insights for reservoir quality and provenance

    Get PDF
    AbstractChlorite is a key mineral in the control of reservoir quality in many siliciclastic rocks. In deeply buried reservoirs, chlorite coats on sand grains prevent the growth of quartz cements and lead to anomalously good reservoir quality. By contrast, an excess of chlorite – for example, in clay-rich siltstone and sandstone – leads to blocked pore throats and very low permeability. Determining which compositional type is present, how it occurs spatially, and quantifying the many and varied habits of chlorite that are of commercial importance remains a challenge. With the advent of automated techniques based on scanning electron microscopy (SEM), it is possible to provide instant phase identification and mapping of entire thin sections of rock. The resulting quantitative mineralogy and rock fabric data can be compared with well logs and core analysis data. We present here a completely novel Quantitative Evaluation of Minerals by SCANning electron microscopy (QEMSCAN®) SEM–energy-dispersive spectrometry (EDS) methodology to differentiate, quantify and image 11 different compositional types of chlorite based on Fe : Mg ratios using thin sections of rocks and grain mounts of cuttings or loose sediment. No other analytical technique, or combination of techniques, is capable of easily quantifying and imaging different compositional types of chlorite. Here we present examples of chlorite from seven different geological settings analysed using QEMSCAN® SEM–EDS. By illustrating the reliability of identification under automated analysis, and the ability to capture realistic textures in a fully digital format, we can clearly visualize the various forms of chlorite. This new approach has led to the creation of a digital chlorite library, in which we have co-registered optical and SEM-based images, and validated the mineral identification with complimentary techniques such as X-ray diffraction. This new methodology will be of interest and use to all those concerned with the identification and formation of chlorite in sandstones and the effects that diagenetic chlorite growth may have had on reservoir quality. The same approach may be adopted for other minerals (e.g. carbonates) with major element compositional variability that may influence the porosity and permeability of sandstone reservoirs.</jats:p

    Effect of Investment in Malaria Control on Child Mortality in Sub-Saharan Africa in 2002–2008

    Get PDF
    BACKGROUND: Around 8.8 million children under-five die each year, mostly due to infectious diseases, including malaria that accounts for 16% of deaths in Africa, but the impact of international financing of malaria control on under-five mortality in sub-Saharan Africa has not been examined. METHODS AND FINDINGS: We combined multiple data sources and used panel data regression analysis to study the relationship among investment, service delivery/intervention coverage, and impact on child health by observing changes in 34 sub-Saharan African countries over 2002-2008. We used Lives Saved Tool to estimate the number of lives saved from coverage increase of insecticide-treated nets (ITNs)/indoor residual spraying (IRS). As an indicator of outcome, we also used under-five mortality rate. Global Fund investments comprised more than 70% of the Official Development Assistance (ODA) for malaria control in 34 countries. Each 1millionODAformalariaenableddistributionof50,478ITNs[951 million ODA for malaria enabled distribution of 50,478 ITNs [95%CI: 37,774-63,182] in the disbursement year. 1,000 additional ITNs distributed saved 0.625 lives [95%CI: 0.369-0.881]. Cumulatively Global Fund investments that increased ITN/IRS coverage in 2002-2008 prevented an estimated 240,000 deaths. Countries with higher malaria burden received less ODA disbursement per person-at-risk compared to lower-burden countries (3.90 vs. $7.05). Increased ITN/IRS coverage in high-burden countries led to 3,575 lives saved per 1 million children, as compared with 914 lives in lower-burden countries. Impact of ITN/IRS coverage on under-five mortality was significant among major child health interventions such as immunisation showing that 10% increase in households with ITN/IRS would reduce 1.5 [95%CI: 0.3-2.8] child deaths per 1000 live births. CONCLUSIONS: Along with other key child survival interventions, increased ITNs/IRS coverage has significantly contributed to child mortality reduction since 2002. ITN/IRS scale-up can be more efficiently prioritized to countries where malaria is a major cause of child deaths to save greater number of lives with available resources

    Quantifying Child Mortality Reductions Related to Measles Vaccination

    Get PDF
    Background: This study characterizes the historical relationship between coverage of measles containing vaccines (MCV) and mortality in children under 5 years, with a view toward ongoing global efforts to reduce child mortality. Methodology/Principal Findings: Using country-level, longitudinal panel data, from 44 countries over the period 1960–2005, we analyzed the relationship between MCV coverage and measles mortality with (1) logistic regressions for no measles deaths in a country-year, and (2) linear regressions for the logarithm of the measles death rate. All regressions allowed a flexible, non-linear relationship between coverage and mortality. Covariates included birth rate, death rates from other causes, percent living in urban areas, population density, per-capita GDP, use of the two-dose MCV, year, and mortality coding system. Regressions used lagged covariates, country fixed effects, and robust standard errors clustered by country. The likelihood of no measles deaths increased nonlinearly with higher MCV coverage (ORs: 13.8 [1.6–122.7] for 80–89% to 40.7 [3.2–517.6] for ≥95%), compared to pre-vaccination risk levels. Measles death rates declined nonlinearly with higher MCV coverage, with benefits accruing more slowly above 90% coverage. Compared to no coverage, predicted average reductions in death rates were −79% at 70% coverage, −93% at 90%, and −95% at 95%. Conclusions/Significance: 40 years of experience with MCV vaccination suggests that extremely high levels of vaccination coverage are needed to produce sharp reductions in measles deaths. Achieving sustainable benefits likely requires a combination of extended vaccine programs and supplementary vaccine efforts

    Development of a heptaplex PCR assay for identification of Staphylococcus aureus and CoNS with simultaneous detection of virulence and antibiotic resistance genes

    Get PDF
    Background Staphylococcal toxicity and antibiotic resistance (STAAR) have been menacing public health. Although vancomycin-resistant Staphylococcus aureus (VRSA) is currently not as widespread as methicillin-resistant S. aureus (MRSA), genome evolution of MRSA into VRSA, including strains engineered within the same patient under anti-staphylococcal therapy, may build up to future public health concern. To further complicate diagnosis, infection control and anti-microbial chemotherapy, non-sterile sites such as the nares and the skin could contain both S. aureus and coagulase-negative staphylococci (CoNS), either of which could harbour mecA the gene driving staphylococcal methicillin-resistance and required for MRSA-VRSA evolution. Results A new heptaplex PCR assay has been developed which simultaneously detects seven markers for: i) eubacteria (16S rRNA), ii) Staphylococcus genus (tuf), iii) Staphylococcus aureus (spa), iv) CoNS (cns), v) Panton-Valentine leukocidin (pvl), vi) methicillin resistance (mecA), and vii) vancomycin resistance (vanA). Following successful validation using 255 reference bacterial strains, applicability to analyse clinical samples was evaluated by direct amplification in spiked blood cultures (n = 89) which returned 100 % specificity, negative and positive predictive values. The new assay has LoD of 1.0x103 CFU/mL for the 16S rRNA marker and 1.0x104 CFU/mL for six other markers and completes cycling in less than one hour. Conclusion The speed, sensitivity (100 %), NPV (100 %) and PPV (100 %) suggest the new heptaplex PCR assay could be easily integrated into a routine diagnostic microbiology workflow. Detection of the cns marker allows for unique identification of CoNS in mono-microbial and in poly-microbial samples containing mixtures of CoNS and S. aureus without recourse to the conventional elimination approach which is ambiguous. In addition to the SA-CoNS differential diagnostic essence of the new assay, inclusion of vanA primers will allow microbiology laboratories to stay ahead of the emerging MRSA-VRSA evolution. To the best of our knowledge, the new heptaplex PCR assay is the most multiplexed among similar PCR-based assays for simultaneous detection of STAAR

    Historical Temperature Variability Affects Coral Response to Heat Stress

    Get PDF
    Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions
    • …
    corecore