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ABSTRACT 1 

Clay coated grains can inhibit ubiquitous, porosity-occluding quartz cement in deeply buried 2 

sandstones and thus lead to anomalously high porosity.  A moderate amount of clay that is 3 

distributed in sandstones as grain coats is good for reservoir quality in deeply buried 4 

sandstones.  Being able to predict the distribution of clay coated sand grains within petroleum 5 

reservoirs is thus important to help find and exploit such anomalously good reservoir quality.  6 

Here we have adopted a high resolution, analogue approach, using the Ravenglass Estuary 7 

marginal-shallow marine system, in NW England, UK.  Extensive geomorphic mapping, 8 

grain size analysis and bioturbation intensity counts were linked to a range of scanning 9 

electron microscopy techniques to characterise the distribution and origin of clay-coated sand 10 

grains within surface sediment.  Our work shows that grain coats are common within this 11 

marginal-shallow marine system but they are heterogeneously distributed as a function of 12 

grain size, clay fraction and depositional facies.  The distribution and characteristics of 13 

detrital-clay coated grains can be predicted with knowledge of specific depositional 14 

environment, clay fraction percentage and grain size.  The most extensive detrital-clay coated 15 

grains are found within sediment composed of fine-grained sand containing 3.5 to 13.0 % 16 

clay fraction, associated with inner estuary tidal flat facies.  Thus, against common 17 

convention, the work presented here suggests that, in deeply buried prospects, the best 18 

porosity may be found in fine-grained, clay-bearing inner tidal flat facies sands and not in 19 

coarse, clean channel fill and bar facies.  20 
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INTRODUCTION 21 

Porosity and permeability generally decrease with increasing depth of burial in sandstones, 22 

although a significant number of deeply buried sandstone reservoirs have unusually high 23 

porosity and permeability (Bloch et al. 2002).  Such anomalously high porosity and 24 

permeability have most commonly been linked to the presence of chlorite clay coated grains 25 

that inhibit the growth of porosity-occluding quartz cement (Ajdukiewicz and Larese 2012; 26 

Ehrenberg 1993; Worden and Morad 2000). 27 

The term clay coat encompasses both detrital and diagenetic origins (Ajdukiewicz and Larese 28 

2012).  Detrital-clay coated grains occur at or near the surface of the sediment, and are the 29 

primary focus of this study. 30 

Diagenetic clay coats either develop from the thermally-driven recrystallization of low-31 

temperature, detrital precursor clay coats or they grow in situ due to the authigenic alteration 32 

of detrital or early diagenetic minerals interacting with the pore fluids during burial 33 

(Ajdukiewicz and Larese, 2012; Wise et al., 2001; Worden and Morad, 2003). 34 

Chlorite and illite clay coatings are considered to preserve reservoir quality by reducing the 35 

nucleation area on detrital quartz grains that is available for authigenic quartz cementation 36 

(Ehrenberg 1993; Pittman et al. 1992).  Porosity can be at least 10 % higher than expected 37 

where grain-coating clays are abundant (Ehrenberg 1993).  Experiments undertaken by 38 

Ajdukiewicz and Larese (2012); Billault et al. (2003) and Lander et al. (2008) led to the 39 

conclusion that clay crystals within the clay coat act as barriers, inhibiting epitaxial quartz 40 

cement growth and subsequent coalescence to form thick quartz overgrowths.  The primary 41 

factors controlling the effectiveness of clay coated grains for the inhibition of authigenic, 42 

porosity-occluding quartz cement are the extent, completeness and distribution of the detrital 43 

precursor clay coated grains (Billault et al. 2003). 44 
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Oil field-based studies which collectively show that clay coats are most common in fluvial to 45 

marginal marine sediments including: Jurassic sandstones on the Norwegian continental shelf 46 

(Bloch et al. 2002), Jurassic-Triassic fluvial, lacustrine-deltaic sandstones of the Ordos basin, 47 

China (Luo et al. 2009), marginal marine Jauf Formation, eastern Saudi Arabia (Al-Ramadan 48 

et al. 2004), the Upper Cretaceous Tuscaloosa Formation, USA (Pittman et al. 1992), and see 49 

review by Dowey et al. (2012).  However there is no model capable of predicting the 50 

occurrence of clay coated grains or the degree of completeness of grain coats within fluvial to 51 

marginal marine sediments. 52 

The positive influence of chlorite and illite clay-coated grains on reservoir quality in deeply 53 

buried sandstone has resulted in extensive reservoir core-based research (Ajdukiewicz et al. 54 

2010; Gould et al. 2010; Pittman et al. 1992) and laboratory experiments (Ajdukiewicz and 55 

Larese 2012; Billault et al. 2003; Pittman et al. 1992).  Chlorite coated grains have been 56 

observed to inhibit quartz cement and the need to understand the origin of chlorite coated 57 

grains was the driving force that led to the current study.  Notable chlorite clay coated 58 

reservoir units include the Tilje Formation, Norwegian continental shelf (Ehrenberg 1993), 59 

Tuscaloosa Formation, U.S. Gulf Coast (Ajdukiewicz and Larese 2012) and the Rotliegend 60 

Sandstone, northern Netherland (Gaupp and Okkerman 2011).  Sandstones which contain 61 

illite and mixed layer illite-smectite clay coated grains have been less commonly advocated 62 

but include the Garn Formation, Mid-Norway (Storvoll et al. 2002), Williams Fork 63 

Formation, Colorado (Ozkan et al. 2011) and Jauf Formation, Eastern Saudi Arabia (Al-64 

Ramadan et al. 2004; Cocker et al. 2003). 65 

Aagaard et al. (2000) showed that low temperature, discontinuous, detrital-clay coated grains 66 

recrystallized during experiments at 90 °C to form thick, continuous, diagenetic clay coats 67 

that are morphologically consistent with naturally occurring reservoir examples.  In some 68 

examples, euhedral clay minerals grow out into the pore from an underlying, unstructured 69 
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clay coat (Gould et al. 2010).  Such clay coat stratigraphy could be the result of a detrital, or 70 

very early diagenetic, clay coat acting as a seed for deep burial diagenetic clay coat 71 

neoformation. 72 

Despite the importance of being able to predict the occurrence and distribution of detrital-73 

clay coated grains, there is no all-encompassing model that is useful for ranking prospects or 74 

populating reservoir models with the completeness of clay coats in marginal marine 75 

sandstones.  Relatively little fundamental work has been undertaken on the controls on clay 76 

coat growth in sediments although Wilson (1992) and Matlack et al. (1989) undertook early 77 

studies focused upon environments (aeolian, marine-shelf, marginal marine, fluvial) in which 78 

clay-coated sand grains occur and potential mechanisms of formation (bioturbation, 79 

infiltration, inheritance).  In order to predict anomalously high porosity in the subsurface, 80 

there is a need to focus on the origin and spatial distribution of detrital-clay coated grains 81 

since clay coats inhibit quartz cement in deeply buried sandstones (Bloch et al. 2002) 82 

Anomalously high porosity has also been shown to derive from other possesses such as early 83 

oil charge, over pressure and microquartz coatings (Bloch et al. 2002). 84 

The four main ways to develop a fundamental understanding of primary sedimentary 85 

environment and mineral distribution, and thus the processes that lead to clay coats, are: core-86 

based studies, outcrop based studies, experimental studies and modern analogue studies.  87 

Core based studies have problems of limited spatial resolution of samples (wide spacing 88 

between wells and the lack of abundant cores in most fields) and the abiding uncertainty 89 

about both the primary mineralogy and exact environment of deposition due to subsequent 90 

diagenetic modifications.  Outcrop based studies overcome the spatial resolution problem but 91 

typically suffer from weathering-related recent changes to mineralogy, plus outcrop-92 

diagenesis studies routinely have problems in seeing through the long history of burial, 93 

heating and then uplift.  We have here adopted a modern analogue approach, linking the 94 
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distribution of detrital-clay coated grains to sedimentary processes and characteristics (grain 95 

size, percentage clay fraction) and biological processes (bioturbation).  The detailed study of 96 

sediment from modern environments permits a high resolution investigation into the 97 

distribution of detrital-clay coated grains, removing the limited spatial distribution, 98 

stratigraphic coverage and ambiguous depositional environment interpretations of subsurface 99 

core-based studies.  This study addresses the following questions, focussed on the marginal-100 

shallow marine Ravenglass Estuary system (Fig. 1).  101 

1. What are the textural characteristics of detrital-clay coated grains within a 102 

modern marginal-shallow marine setting? 103 

2. What are the mineralogical characteristics of clay-coated sand grains within a 104 

modern marginal-shallow marine setting? 105 

3. How variable is the coverage of detrital-clay coated grains within a modern 106 

marginal marine system? 107 

4. What controls the formation and distribution of detrital-clay coated grains? 108 

5. Are the clay coats in this modern, marginal-shallow marine system, texturally 109 

comparable to other modern or subsurface examples? 110 

6. What is the potential impact of using modern analogues for the prediction of 111 

reservoir quality in ancient and deeply buried sandstones from the same 112 

primary environment? 113 

STUDY SITE GEOMORPHOLOGY 114 

The Ravenglass Estuary is located in Cumbria, NW England.  The mid to upper portions of 115 

the Ravenglass Estuary are fed by three rivers the Esk, Mite and Irt, with the lower, western 116 

part of the estuary connected by a single channel to the Irish Sea (Bousher 1999) (Fig. 1).  117 

Ravenglass sediment is quartz-dominated (Daneshvar 2011; Daneshvar and Worden 2016) 118 
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with depositional environments translatable to marginal-shallow marine petroleum reservoirs.  119 

Ravenglass is a modern analogue equivalent to the environment of deposition for many 120 

ancient and deeply buried, chlorite-coated sandstone reservoirs such as the tidally-influenced, 121 

shallow marine-deltaic Tilje Formation, Norway (Ehrenberg 1993), braid delta margin with 122 

foreshore and shoreface deposits Garn Formation, Norway (Storvoll et al. 2002), and 123 

shallow-marine to deltaic Lower Vicksburg Formation, USA (Grigsby 2001). 124 

The 5.6 km² estuary has a maximum tidal range of 7.55 m and is 86% intertidal (Bousher 125 

1999; Lloyd et al. 2013).  The estuary has extensive back barrier tidal flats and tidal bars, 126 

fringed by well-established saltmarsh vegetation (Bousher 1999).  The estuary is connected to 127 

the Irish Sea through a single, 500m wide, tidal inlet that dissects a fringing coastal barrier 128 

which is topped with eolian dunes.  The three fluvial channels, fluvial overbank, foreshore 129 

and ebb delta complex provide a complete fluvial to marine transect that we have investigated 130 

in terms of depositional environments, and detrital-clay coat abundance, with analysis of 131 

detrital-clay coat mineralogy (Fig. 1).  Despite the high spring tidal range, the estuary 132 

contains geomorphological elements consistent with a mixed energy (wave-tide) regime, 133 

following the estuary classification scheme proposed by Ainsworth et al. (2011).  This 134 

indicates a tidal hydrodynamic dominance within the inner estuary and wave-dominated 135 

processes occurring along the foreshore coastal side of the barrier spits. 136 

The marginal- shallow marine Ravenglass system can be divided into fluvial-, estuary-, 137 

shallow marine- and eolian dune-dominated regimes, with the results of this study subdivided 138 

by sub-environment.  The estuary has a clay mineral sediment assemblage consisting of 139 

chlorite, illite and kaolinite, largely derived from suspended fluvial sediment, originating 140 

from incision and weathering of the hinterland geology (Daneshvar 2011; Daneshvar and 141 

Worden 2016).  The southern River Esk drains the Palaeozoic Eskdale Granite; the northern 142 

River Irt drains the Triassic Sherwood Sandstone Group and the Borrowdale Volcanic Group; 143 
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the central, but minor, River Mite drains a combination of Eskdale Granite, Triassic 144 

Sherwood Sandstone Group and the Borrowdale Volcanic Group (Moseley 1978).  145 

MATERIALS AND METHODS 146 

Field-Based Mapping of the Estuary 147 

The estuary was initially mapped by identifying each depositional environment via world 148 

imagery and Google Earth.  Extensive field mapping and sampling of all geomorphological 149 

elements enabled ground-truthing of mapped depositional elements and interpolation using 150 

ArcGIS.  Tidal flats were further subdivided using the scheme proposed by Dyer (1979), 151 

based upon component volume clay fraction (< 2 µm fraction): 152 

0-10 % clay fraction is classed as sand flat, 153 

10-30 % is muddy sand flat, 154 

30-80 % is sandy mud flat. 155 

Surface sediment grain size (approximately 2 cm depth) was determined at 3151 sites in the 156 

field using grain size cards and mapped using interpolated in ArcGIS.  Lugworm faecal cast 157 

density (number per square metre) was recorded in the field using a 1m2 quadrat, randomly 158 

thrown at 3182 sites within the estuary.  Lugworm density was mapped across the entire 159 

intertidal exposed area, and also mapped using interpolated in ArcGIS. Polished thin sections 160 

were constructed from samples across a tidal flat succession to allow mineralogical 161 

quantification via automated scanning electron microscope-energy dispersive spectrometry 162 

(SEM-EDS). Sediment clay fraction mineralogy was established through X-ray diffraction 163 

analysis (XRD). 164 

Determination of Clay Coat Coverage 165 
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This study is primarily focused on a suite of 181 surface sediment samples which were 166 

subject to grain coat petrography.  The sample sites were chosen to provide sufficient spatial 167 

coverage and to encompass a fluvial- shallow marine transect incorporating all depositional 168 

environments.  The clay size fraction volume (weight percentage) was established for 95 of 169 

the 181 sites. 170 

Approximately 50 cm3 of surface sediment was collected at each of the 181 sites.  The 171 

sediment was then sub-sampled and dried at room temperature.  Quantification of detrital 172 

clay coverage was achieved using scanning electron microscope (SEM) analysis of grain 173 

mounts on a 1 cm diameter stub.  The grain mount stubs were examined by SEM petrography 174 

in backscattered electron (BSE) imaging. 175 

A complete traverse across each SEM stub was collected by stitching together nine or more 176 

BSE images taken for each sample to produce a representative image of approximately 200 177 

grains. In comparison to thin-section based approaches for the study of grain coats, this 178 

approach permitted the investigation of detrital-clay coated grains in three dimensions.  It 179 

also allowed for detailed classification of each sample (Fig. 2).  Here we have adopted a 180 

novel approach that initially categorises the samples in terms of absence (group 1) or 181 

presence (groups 2-5) of clay coat and then subdivides those with coats into the degree of 182 

coat coverage (by surface area).  Detrital-clay coats within this study were thus categorised 183 

into five principle classes: 184 

1) Complete absence of attached clay coats. 185 

2) Less than half of the grains have a small (~ 1-5 %) surface area of attached clay coats. 186 

3) Every grain exhibits at least ~ 5-15 % surface area of attached clay coats. 187 

4) Clay coats observed on every grain with the majority exhibiting extensive (~ 15-30 %) 188 

surface area grain coverage. 189 

5) Extensive > 30 % surface area covered by clay coats observed on every grain. 190 
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To ensure reliability of the method and interpretation, duplicate SEM stub preparation and 191 

analysis was undertaken for 38 of the 181 samples to check the consistency of the 192 

classification method.  We here note that all replicates faithfully reproduced the initial 193 

classification.  Critical point drying (Jernigan and McAtee 1975) was not applied to the 194 

samples, owing to the absence of delicate fibrous clays associated with authigenic growth. 195 

Clay coat mineralogy  196 

Mineralogical quantification of clay coated sand grains from a mixed sand-mud tidal flat was 197 

undertaken via SEM-EDS using an FEI-QEMSCAN® (Armitage et al. 2016).  This approach 198 

was selected to enable in-situ imaging of clay mineralogy, distribution characteristics and 199 

define the link between sediment clay mineralogy and that of clay coats.  Three polished thin 200 

sections were constructed from surface sediment.  The QEMSCAN® system comprises a 201 

scanning electron microscope coupled with fast energy dispersive spectrometers (EDS), a 202 

microanalyzer and an electronic processing unit, which integrates the data to provide 203 

information about the micron scale texture, chemical and mineral composition. The step size 204 

for the analysis was 1 µm to ensure that the fine fraction in the sediment was analyzed as well 205 

as framework grains.  206 

The data are presented as a combination of a backscatter secondary electron image, and fully 207 

quantitative mineralogical content image (framework grains) and quantitative clay 208 

mineralogy (total clay, illite, chlorite, kaolinite) to represent the sediment assemblage and 209 

component clay-coated sand grains. 210 

Determination of clay fraction 211 

The percentage of the clay fraction (< 2 µm) was established via homogenised sediment sub-212 

samples, dried at 60°C.  A few grams of sample were added to 200ml of water and then 213 

ultrasonicated for 20 minutes with vigorous stirring at 5 minute intervals.  Gravity settling 214 
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removed sand and silt sized particles, with the supernatant water (containing the clay grain 215 

sized particles) decanted and settled by centrifugation to obtain the clay fraction.  The 216 

separated clay fraction was dried at 60°C, crushed in an agate pestle and mortar and then 217 

weighed, revealing the percentage clay fraction within the sediment sample. 218 

Determination of bulk sediment clay fraction mineralogy 219 

Classification of the clay fraction (<2 µm) mineralogy was undertaken by X-ray diffraction 220 

analysis (XRD).  The clay sized fraction was detached from framework grains using an 221 

ultrasonic bath and isolated using centrifuge settling, at 5000 rpm for 10 minutes.  The 222 

separated clay fraction was dried at 60 degrees and scanned as a randomly orientated powder, 223 

using a PANalytical X’Pert Pro MPD X-ray diffractometer.  XRD analysis was carried out 224 

for the same samples that were mineralogy mapped through (SEM-EDS) analysis. 225 

RESULTS 226 

Surface Sedimentary Characteristics and Distribution of Biological Activity 227 

Sedimentary environments were identified in the field, with further subdivision of the tidal 228 

flats based upon the lab-derived clay fraction data sets into sand-flat, muddy sand-flat and 229 

sandy mud-flat (Fig. 1). 230 

High resolution, spatial distribution maps of sediment grain size reveal a wide range of mean 231 

grain sizes, from very fine to coarse sand sized sediment (Fig. 3A).  There is a large scale 232 

trend of decreasing grain size away from the ocean, and smaller scale patterns of decreasing 233 

grain size with increasing distance from the main ebb channel, towards the tidal limit (Fig. 234 

3A). 235 

A heterogeneous distribution of lugworms occurs in the estuary, as denoted by the widely 236 

varying lugworm cast density (Fig. 3C).  The lugworm density at the sediment surface is 237 
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taken to indicate the intensity of bioturbation in the biotic zone of the sediment (McIlroy et 238 

al. 2003; Needham et al. 2005).  The highest density of lugworms (31 to > 50 per m2) was 239 

observed within the outer sand tidal flats and non-vegetated tidal bar depositional 240 

environments (Figs. 1 and 3C).  Comparing the sediment grain size map (Fig. 3A) to the 241 

lugworm population map (Fig. 3B) suggests that well-developed lugworm populations tend to 242 

be confined predominantly to the inner estuary where the sediment grain size tends to be 243 

between 88 and 177 μm. 244 

The percentage sediment clay fraction data have been split into eight classes (Fig. 3B).  245 

Samples that contain > 1.5 % clay fraction are confined to the inner estuary.  Samples that 246 

contain < 1.5 % clay fraction sit within the seaward portion of the estuary and outer tidal-flats 247 

(Fig. 3B).  This pattern suggests that there is an inverse relationship between overall grain 248 

size and the amount of co-deposited clay fraction, i.e. there is an increased percentage of the 249 

clay fraction with decreasing grain size. 250 

Clay fraction mineralogy 251 

The sediment samples have a clay fraction composed of illite, chlorite and kaolinite, with an 252 

average 7.6 % clay fraction in the sediment . X-ray diffraction shows that the clay fraction is 253 

dominated by illite (62 % of the clay fraction) clay with chlorite (17 % of the clay fraction) 254 

and kaolinite (21 % of the clay fraction) expressing similar values. (Fig.4). 255 

Characteristics of Detrital-clay coats 256 

The observed detrital-clay coated grains are generally characterised by thin and discontinuous 257 

accumulations of individual but interlocking (overlapping and aligned clay platelets) clay 258 

minerals (Fig. 5).  This study has focussed on the morphology of the coat and here we do not 259 

rely on a differentiation based on internal structure.  Each sample was characterised by the 260 

morphology of the coat, the extent (degree) of grain coverage and abundance (proportion of 261 
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grains that contain coats) (Figs. 2).  The clay coats occur on both convex and concave grain 262 

faces but the coats with the greatest thickness (maximum of about 5 µm) occur in grain 263 

indentations (Fig. 5G, 6E, 7).  Clay coats occupy up to about 60 % surface area of individual 264 

grains in a given sample. 265 

Detrital-clay coats are composed of individual interlocking clay minerals with a mixed 266 

mineralogy even along a singular ridge structure and a range of accessory impurities 267 

consisting of silt-sized quartz and bioclastic debri.  Clay coats have been observed on all 268 

component framework grains within the sediment assemblage (quartz, feldspar, dolomite, 269 

calcite).  The sand grains within this study are coated with a mixture of clay minerals (Fig. 7), 270 

dominated by illite (9.1 image area percentage), with minor chlorite (1.7 image area 271 

percentage) and kaolinite (1.1 image area percentage).  There was no identified variability 272 

between clay mineralogy and component clay coat morphological classes (ridged, bridged, 273 

and clumped). 274 

Detrital-clay coats occur with a variety of morphologies (Fig. 5).  Here, we have grouped the 275 

samples into three principle morphological classes: ridged, bridged and clumped (Fig. 6). 276 

Ridged clay coats consist of elongate intergrowths of plate-like clay minerals, orientated at 277 

high angles to the grain surface (Fig. 6A).  Ridged coats have variable lengths (< 200 µm) 278 

and are preferentially observed upon relatively flat grain surfaces with minimal (silt) 279 

impurities.  Ridged clay coated grains predominantly occur within the coarser, cleaner 280 

sediment assemblages that are associated with outer tidal flat and non-vegetated tidal bar 281 

environments. 282 

Bridged clay coat textures occur between detrital grains.  Bridged clay coats consist of 283 

elongate clay mineral aggregates that connect two grains.  Bridged clay coats are relatively 284 

uncommon within surface sediment, possibly as result of the sampling procedure (Fig. 6B). 285 
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Clumped clay coats are highly variable both in extent and thickness (Fig. 5 and 6C).  286 

Clumped coatings are commonly reach sizes of up to 200 µm, and contain silt-sized 287 

fragments as well as clay grade material.  Clumped clay coats are most abundant within the 288 

upper estuary intertidal muddy sand flats, tidal bars and salt marsh depositional 289 

environments. 290 

Spatial Distribution of Detrital-Clay Coated Grains 291 

There is a high degree of variability in the distribution of detrital-clay coated grains, although 292 

most outer estuary sediment exhibits no more than minor attached clay coats (Fig. 8).  The 293 

proportion of detrital-clay coated grains in the estuary tends to increase with distance from 294 

the open ocean and with distance from the main ebb channel.  Clay coats are most extensive 295 

within the upper reaches of the three estuary channels.  There is a strongly heterogeneous 296 

distribution of clay coat classes within the southern Esk estuary arm, while the northern Irt 297 

and central Mite estuary arms show more homogeneous distributions.  In the central and sea-298 

ward portions of the estuary, clay coats tend to be either absent or present in trace amounts 299 

(classes 1 and 2). 300 

The surface sediment samples have here been plotted against depositional environment, with 301 

the aim of allowing the modern clay coat data to be compared to ancient, deeply buried 302 

sediments (Fig. 9).  Detrital-clay coated grains are present within the fluvial channel 303 

sediments ranging from absent (class 1) to extensive (class 4) depending upon the position of 304 

the sample relative to the channel axis.  Grains from inner meander and point bars samples 305 

typically have better developed clay coats representative of class 3-4.  Grains from fluvial 306 

overbank samples tend to have the best developed detrital-clay coats on grains (class 3-5). 307 

Inner estuary tidal depositional environments have a heterogeneous pattern of detrital-clay 308 

coated grain coverage.  Clay coats are more extensively developed on detrital grains within 309 
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vegetated, as opposed to non-vegetated, tidal bars (Fig. 9).  Tidal flats (sand flat, muddy sand 310 

flat, sandy mud flat) represent the only inner estuary depositional environment in which the 311 

full spectrum of clay coat grain coverage has been observed (classes 1 to 5).  Samples that 312 

contain >10% clay fraction correspond to muddy sand flats.  All grains in all samples from 313 

muddy sand flats contain some degree of clay coating.  Samples from sandy mud flat (with 314 

>30% clay fraction) contain extensive (class 4-5) detrital-clay coat grain coverage.  Saltmarsh 315 

sediment assemblages have uniformly well-developed detrital-clay coats (class 5).  The 316 

observed variability in detrital-clay coat characteristics within tidal environments correlates 317 

to grain size; the more extensively developed detrital-clay coats (class 4-5) occur within very 318 

fine sand grain size dominated sediment (e.g. compare Fig. 8 to Fig 3A). 319 

The samples from foreshore, ebb delta, tidal inlet and eolian dune depositional environments 320 

largely do not contain detrital-clay coated grains.  Most samples from the vegetated, dune-321 

topped spits and sheltered region within the tidal inlet contained no clay coat coverage (class 322 

1) and the remainder had minor clay coat coverage (class 2) (Fig. 9).  323 

Detrital-Clay Coated Grains: Grain Size, Clay Fraction and Bioturbation 324 

Bin class intervals have been plotted against average grain size, percentage clay fraction and 325 

lugworm density (Fig. 10).  This confirms that there is increasing percentage clay fraction 326 

with decreasing grain size.  This also shows that increasing the percentage of the clay fraction 327 

correlates with increasing clay coat coverage (class number).  Thus, clay coat class 3 (every 328 

grain exhibiting at least ~5-15 % attached clay coats) corresponds to sediment with a 2.5% 329 

clay fraction, while clay coat class 5 (extensive, >30 %, clay coats observed on every grain) 330 

corresponds to sediment with 10% clay fraction (Fig. 10).  The coverage of clay coats does 331 

not seem to simply relate to lugworm density with the two highest clay coat classes found in 332 

association with low lugworm densities (Fig. 10). 333 
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Detrital-clay coats vary systematically within a given depositional environment (Fig. 9).  334 

Extensive detrital-clay coated grains are observed within the inner estuary tidal depositional 335 

environments, and they increase in extent towards the upper tidal limit (Figs. 8 and 9).  336 

Variations in grain size and clay fraction are secondary controls, with a lower fine sand grain 337 

size and >5 % clay fraction required to form uniform-extensive detrital-clay coats upon 338 

grains (class 3-5).  There are negligible attached clay coats (class 1-2) observed within the 339 

high energy (upper fine-lower medium grain size), clean (<2% clay fraction) sand 340 

assemblages of the outer sand tidal flat, foreshore, ebb delta and eolian dune environments. 341 

DISCUSSION 342 

Origin of Detrital-clay coat Textures 343 

The internal fabric and outer morphology of clay coats in deeply buried reservoir have been 344 

described in a few studies.  Clay coats tend to be composed of an inner, densely packed, 345 

tangentially oriented, root layer that tends to be overlain by an outer coat composed of 346 

perpendicular euhedral flakes that grow into open pore spaces (Ajdukiewicz and Larese 2012; 347 

Wise et al. 2001).  It has been proposed that the inner layers are the result of thermally-driven 348 

recrystallization of precursor detrital-clay coats (Aagaard et al. 2000; Billault et al. 2003).  349 

The clay coats from the Ravenglass Estuary, described here, are therefore analogues for the 350 

inner layer of clay coats reported from deeply buried reservoirs. 351 

The observed ridged and bridged textures within this study (Fig. 6A, B, 7) have been reported 352 

previously in a range of case studies (Dowey 2013; Franks and Zwingmann 2010; 353 

Houseknecht 1992; Matlack et al. 1989; Moraes and De Ros 1992; Wilson 1992) and in 354 

synthesis experiments (Matlack et al. 1989).  Ridged detrital-clay coat textures have been 355 

interpreted to derive from infiltration processes (Wilson 1992); bridge structures have been 356 

reported to form where ridges join two adjacent grains; initially bridged structures develop 357 
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distinct ridged texture when the sediment is disaggregated (Matlack et al. 1989).  The 358 

sediment from the Ravenglass Estuary exhibits many of the textural characteristics that have 359 

been reported to result from clay infiltration into sand-dominated sediment (Wilson 1992).  360 

Infiltrated ridged detrital-clay coat textures have been reported within the Brazos River and 361 

Galveston marginal marine system, Texas (Matlack et al. 1989), as well as in the Anllons 362 

Estuary, Spain and Leiravogur Estuary, Iceland (Dowey 2013). 363 

Infiltration occurs when water that contains suspended clay and silt flows into partially water-364 

saturated sandy sediment.  Within estuarine settings, infiltration is driven by a hydraulic 365 

gradient produced by the effect of the tidal range.  This gradient drives suspended clay 366 

through the sediment at falling tide, towards the low tidal main ebb channel or during times 367 

of flooding due to increased rainfall in the hinterland (Santos et al. 2012).  Reduction of flow 368 

velocity results in the deposition of the suspended clay and silt particles on to the sand grains 369 

(Dowey 2013; Worden and Morad 2003). 370 

Clumped clay coat textures, that are comparable to those illustrated in this study (Fig. 6C), 371 

have been reported within the sediment of the Mandovi Estuary, India (Mohan Kessarkar et 372 

al. 2010), with similar clump sizes and textures.  The subtropical Mandovi Estuary clay coats 373 

are composed of clay particles, bioclasts and organics that produce a heterogeneous 374 

mineralogy that is reported to be fluvially-derived from weathering products in the hinterland 375 

(Mohan Kessarkar et al. 2010).  Clumped clay accumulations have also been reported within 376 

the fluvial-estuarine Rappahannock River, Virginia (Pierce and Nichols 1986).  In both the 377 

Rappahannock and Mandovi examples, clumped textures were interpreted to originate from 378 

the deposition of biogenic (faecal) pellets and flocculated estuarine aggregates (Crone 1975) 379 

under stagnant pore water conditions in the estuary. 380 

A comparison of clay coat textures found in the Ravenglass Estuary to other modern 381 

analogues, as well as experimental-based results, suggests that clay coats derive from a 382 
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combination of infiltration, resulting in the ridged-bridge textures, and flocculation with the 383 

deposition of biogenic faecal pellets resulting in clumped textures. 384 

Origin of detrital-clay coat mineralogy: internal or external to the estuary? 385 

The illite-dominated, mixed mineralogy of the clay-coated sand grains, determined by 386 

spatially-resolved SEM-EDS (Fig. 7), is consistent with the clay fraction mineralogy 387 

identified by XRD (Fig. 4).  Had the clay coats formed in the hinterland, a much more varied 388 

clay-coat mineralogy would be expected than revealed by micro-studies using SEM-EDS and 389 

bulk-studies using XRD.  Therefore, the observation that the clay coat mineralogy reflects the 390 

bulk clay mineralogy of the estuary implies that the clay coats were formed in the estuary 391 

itself rather than in the hinterland. 392 

Detrital-Clay Coat Distribution and Origin 393 

It has been reported that the primary depositional environment of a clastic sediment exerts a 394 

strong control on subsequent diagenetic processes, via the sediment texture, primary 395 

mineralogy, organic content and aqueous chemistry (Ehrenberg 1997; Morad et al. 2010; 396 

Worden and Morad 2003).  The concept of a depositional control on the occurrence, type and 397 

subsequent diagenetic evolution of detrital-clay coats is reasonably well established (Bloch et 398 

al. 2002; Dowey et al. 2012; Ehrenberg 1993; Luo et al. 2009; Matlack et al. 1989).  The 399 

results of this study confirm a depositional environment control but reveal, for the first time, 400 

systematic variability of the extent and completeness of clay coat coverage on a marginal 401 

marine depositional sub-environments scale.  402 

Comparison of Clay Coats in Ravenglass to Modern Estuary Studies 403 

In the Ravenglass marginal-shallow marine system, the most extensive detrital-clay coated 404 

grains are confined to the inner estuary tidal flat, tidal bar, saltmarsh and fluvial point bar 405 
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depositional environments.  In contrast, detrital-clay coated grains are effectively absent 406 

within the coarse, clean sand that is associated with outer tidal flats, foreshore, dune topped 407 

spits, fluvial channel axis and main ebb channels.  The distributions that are illustrated in 408 

Figures 8 to 10 have similarities to that of detrital-clay coated grain distribution along the 409 

Texas Gulf Coast, Galveston and within the Brazos River (Matlack et al. 1989).  The Texas 410 

study reported clay coated grains from fluvial point bars, but an absence of detrital-clay 411 

coated grains within beach, delta beach, flood tidal delta, and delta plain surface sediments.  412 

Studies of the Anllons Estuary, Spain and Leiravogur Estuary, Iceland undertaken by Dowey 413 

(2013), support the observed distribution within this study, with detrital-clay coated grains 414 

being best developed within the less marine-influenced, middle and upper estuary reaches 415 

related to muddy tidal flats. 416 

Comparison of Ravenglass Clay Coats to Ancient, Deeply Buried Clastic 417 

Sediment 418 

Reservoir studies, based on cored wells and interpretation of primary depositional 419 

environments, tend to be hampered by a lack of high resolution facies interpretation and 420 

relatively poor definition of the spatial and stratigraphic distribution of clay coated grains.  421 

To date, there is no published subsurface reservoir dataset that compares to the high spatial 422 

resolution and the complete certainty of the depositional environment used in this modern 423 

analogue study.   424 

Although morphologically dissimilar, occurring as discontinuous clumps and ridges, broad 425 

textural and mineralogical similarities are identifiable between the precursor detrital-clay 426 

coats of this study and clay coats in diagenetically-altered reservoirs.  Mixed mineralogy has 427 

been reported in several reservoirs, for example the Lower Cretaceous Mississauga 428 

Formation (Gould et al. 2010) and the Jurassic Garn formation (Storvoll et al. 2002), in which 429 
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the inner (tangential) diagenetic clay coats consist of a mixed illite-chlorite- mineralogy that 430 

is broadly similar to the mixed mineralogy of the detrital-clay coats in Ravenglass (Fig. 7 ). 431 

In the Upper Carboniferous submarine-fan and marine slope facies of the Arkoma Formation, 432 

USA it has been reported that muddy clay coated grain facies offer the best reservoir quality 433 

prospects compared to the well-sorted, clean sandstones (with little or no dispersed clays). 434 

(Houseknecht 1992).  In the Arkoma Formation, amalgamated sandstone units contain beds 435 

with clay coated grains and no quartz overgrowth and adjacent clean sandstone beds that are 436 

devoid of clay coated grains but with pervasively quartz overgrowth, and therefore have 437 

negligible remaining porosity (Houseknecht 1992).  Although the environment of deposition 438 

is different, the Arkoma example illustrates that a small quantity of clay that is co-deposited 439 

with sand can lead to improved reservoir quality. 440 

CONTROLS ON THE FORMATION AND DISTRIBUTION OF 441 

DETRITAL-CLAY COATS 442 

In this study, we have produced a high resolution, modern analogue data set and established 443 

the distribution patterns of detrital-clay coats relative to surface sedimentary and biological 444 

facies.  Percentage clay fraction, grain size and bioturbation have all been advocated as 445 

controls on the origin of clay coated grains in ancient, deeply buried sandstones. 446 

Role of Grain Size 447 

From this study, the observed inverse relationship of increasing detrital-clay coats coverage 448 

with decreasing grain size (Fig. 10) is consistent with previous observations by Wilson 449 

(1992), that clay coats are more extensively developed within finer grained sandstones in 450 

Holocene eolian dune and marine-shelf settings.  The Permian-Carboniferous Unayzah 451 

sandstones, Saudi Arabia, also have a reported relationship between mean grain size and the 452 
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average percentage coverage of grains, with fine- to very fine-sandstone exhibiting the 453 

greatest degree of clay coat coverage (Shammari et al. 2010).  454 

Role of Percentage Clay Fraction Control 455 

The role that percentage clay fraction (< 2 µm) plays in the formation and distribution of 456 

detrital-clay coated grains is not well established within the literature.  However, the Anllóns 457 

Estuary, Spain, has a clay fraction percentage that increases in marginal areas towards the 458 

upper tidal limit (Dowey 2013), consistent with the present study.  The Anllóns example 459 

identified a trend comparable with Ravenglass of increasing clay coats coverage with 460 

increasing co-deposited clay fraction percentage (Dowey 2013).  Furthermore, in the Texas 461 

Gulf Coast at Galveston and within the Brazos River, virtually no clay-coated grains occur in 462 

environments that are characterised by low suspended sediment concentrations (assumed here 463 

to be proportional to the percentage clay fraction) (Matlack et al. 1989). 464 

Bioturbation Control 465 

Sediment bioturbation (specifically ingestion and excretion) has been experimentally shown 466 

to lead to the creation of clay coats on detrital sand grains (McIlroy et al. 2003; Needham et 467 

al. 2006; Needham et al. 2004; Needham et al. 2005).  This mechanism works through the 468 

production of a mucus membrane on sand grains which then adheres finer clay-silt sized 469 

sediment on to the sand grains. 470 

In the present study, the distribution of clay-coated grains does not spatially correlate with the 471 

degree of bioturbation observed in the estuary (compare Fig 3, 8 and see Fig. 10).  It is also 472 

notable that a similar conclusion can be drawn from the Lower Cretaceous Missisauga 473 

Formation, Scotian Basin, where the coverage of clay coated grains does not positively 474 

correlate with the degree of bioturbation (Gould et al. 2012).  The lack of correlation between 475 

bioturbation and the degree of clay coated grains in this study may result from the limited 476 
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environmental grain size niche of the utilized lugworm biogenic proxy.  To address this, a 477 

focused study on the abundance distribution of estuarine macro- and microorganisms would 478 

be required. 479 

IMPLICATIONS FOR HYDROCARBON EXPLORATION 480 

Target Reservoir Quality Prospects 481 

At depths > 3 km (temperatures > 90°C) pervasive authigenic quartz typically starts to 482 

become a dominant cement in sandstones (Bloch et al. 2002).  Such sandstones risk becoming 483 

extensively quartz cemented if grain coats are absent, or poorly developed, upon grain 484 

surfaces (Ajdukiewicz and Larese 2012).  485 

Based upon the surface distribution patterns of detrital-clay coats presented here (Figs. 8-10), 486 

the best prospects for anomalously high reservoir quality due to the presence of clay coated 487 

grains in deeply buried sandstones (> 3km), should be sought within the fine sand sized 488 

sediment that also contains approximately 5% clay fraction percentage.  Specifically targeting 489 

clay-bearing sandstones in the hunt for elevated porosity is against common convention, 490 

which would typically target the cleanest, most clay-free sandstones.  Our interpreted 491 

optimum value of approximately 5 % clay fraction is based upon the likelihood of producing 492 

extensive clay coats within sandstones.  However we note that highly elevated clay content 493 

would of course produce a detrimental effect on permeability and porosity (see next section).  494 

Sites with fine sand-sized sediment that also contain approximately 5% clay fraction 495 

correspond to inner estuary tidal bar, tidal flat and fluvial point bar facies in the Ravenglass 496 

system.  In contrast, coarse, clean sand from tidal channels, outer sand flat and foreshore 497 

facies would, upon deep burial, potentially experience pervasive quartz cementation due to 498 

the lack of inhibiting detrital-clay coated grains if the sediment reached temperatures 499 

sufficient for quartz cementation. 500 
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Goldilocks Zone of Optimum Detrital-Clay Coat Coverage 501 

The high resolution, marginal-shallow marine model for the distribution of detrital clay-502 

coated grains presented in this study may be used, by analogy, to help in the prediction of 503 

clay coated sandstones in the deep subsurface.  Too much clay is highly detrimental to 504 

sandstone reservoir quality (Armitage et al. 2016; Houseknecht and Pittman 1992; Worden 505 

and Morad 2003) since abundant clay minerals fill pores and block pore throats between sand 506 

grains.  The quantity of clay in a sandstone that is sufficient to coat grains (and thus inhibit 507 

quartz cement) but not enough to block pore throats, surprisingly, remains poorly resolved, 508 

and is addressed below. 509 

Bloch et al. (2002) noted that a minor amount of clay (as little as 1 to 2% of the rock volume) 510 

can coat a relatively large surface area of sandstone grains, but the optimum amount for 511 

specific clay minerals has not been precisely defined.  Here examples from previous studies 512 

were used to help constrain broad percentages of total clay quantities as clay coats that can 513 

lead to the development of diagenetic coats which can successfully inhibit quartz cement.  514 

Pittman et al. (1992) suggested an optimum range of 5 to 13 % sediment volume of clays 515 

occurring as chlorite grain coats for the Tuscaloosa Formation and 4 to 7 % for the Berea 516 

Sandstone.  Heald and Baker (1977) reported an optimum range of 3.5 to 6.5 % volume of 517 

illite clay coats for reservoir quality within the Rose Run sandstone.   518 

Here, we tentatively propose (from the observed association of clay fraction occurring 519 

predominantly as clay coatings) lower and upper threshold values of 3.5 and 13.0 % total 520 

volume of clay minerals (chlorite, illite and mixed) as the optimum range for the eventual 521 

development of clay coats that can form continuous barriers that prevent quartz cementation 522 

and so preserve reservoir quality.  Using the 3.5 to 13.0 % range of total volume of clays, we 523 

have mapped out regions within the Ravenglass Estuary that would lead to the best reservoir 524 
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quality, were this sedimentary system to be deeply buried (Fig. 11).  These optimum regions, 525 

termed “Goldilocks zones”, encompass the central tidal flat region, non-vegetated and upper 526 

estuary tidal bar depositional environments. 527 

CONCLUSIONS 528 

1. The work presented here, from the Ravenglass Estuary, UK, represents the first high 529 

resolution study of the distribution of detrital-clay coated grains within a modern 530 

marginal-shallow marine setting. 531 

2. Sedimentary environment is the main control on the absolute quantity of clay minerals 532 

and detrital-clay coat sand grain coverage in these sand-dominated sediments. 533 

3. Detrital-clay coats in recent sediments have discontinuous ridged, bridged and 534 

clumped textural morphologies.  The coats on sand grains are formed of individual 535 

interlocking clay minerals with silt-sized lithic and bioclastic accessory components 536 

and were probably derived from a combination of infiltration (of clay-bearing water 537 

into sand-dominated sediment), flocculation and biogenic processes.  Clay coats range 538 

from being absent to covering > 30% of sand grain surfaces in a given sample. 539 

4. The observation that the illite-chlorite-kaolinite clay coat mineralogy reflects the bulk 540 

clay mineralogy of the estuary implies that the clay coats were formed in situ within 541 

the estuary rather than in the hinterland. 542 

5. The distribution of detrital-clay coated grains is primarily a function of sediment grain 543 

size and clay fraction percentage.  In the Ravenglass case study, a sediment 544 

assemblage composed of fine-grained sand containing > 5 % clay fraction percentage 545 

is necessary for the development of uniform-well developed clay coats on detrital 546 

grains.  547 
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6. The best prospects for anomalously high reservoir quality in deeply buried marginal 548 

marine sandstones (i.e. with inhibited growth of quartz cement) should most likely be 549 

sought within clay-rich inner estuary tidal facies.  550 
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FIGURE CAPTIONS 551 

Figure 1. Location maps. A) The Ravenglass Estuary, within the UK. B) Regional map 552 

showing the study area and component depositional environments.  Tidal flats have been 553 

subdivided based upon their component clay fraction (< 2 µm); 0-10 % sand flat, 10-30 % 554 

muddy sand flat, 30-80 % sandy mud flat.  Classification modified from the scheme initially 555 

proposed by Dyer (1979).  The black square indicates the sediment sample location from 556 

which clay coat (SEM-EDS) and sediment clay fraction (XRD) mineralogical analyses (Fig.4 557 

and Fig. 5) were undertaken. 558 

Figure 2. SEM electron images showing the variable extent of attached clay coats observed 559 

within surface sediment samples, which define the basis of the utilized classification scheme. 560 

1) Complete absence of clay coats. 2) ~1 to 5 % attached clays on less than half of the grains. 561 

3) Every grain exhibits ~5 to 15 % clay coats coverage. 4) Clay coats observed on every grain 562 

with the majority exhibiting extensive ~15 to 30 % coverage.  5) Extensive, > 30 % clay 563 

coats coverage observed upon every grain. 564 

Figure 3. Distribution maps of surface sedimentary features.  A) High resolution map of 565 

surface sediment grain size (n = 3150).  B) Surface distribution of clay fraction percentage (n 566 

= 2000)  C) High resolution map of lugworm population in surface sediment (n = 3182).  567 

Figure 4. X-ray diffractogram used to quantify the bulk sediment clay fraction mineralogy of 568 

surface sediment within the Ravenglass Estuary (for location, see Fig. 1). 569 

Figure 5. Representative SEM electron images of the textural characteristics of surface clay 570 

coated sand grains.  Arrows indicate regions of clay coat coverage.  Note the extent of the 571 

ridged clay coat morphologies composed of interlocking and aligned clay particles (A, B, C, 572 

and E).  The clumped clay coat aggregates composed of clay minerals, lithics and organics 573 

are illustrated within (A, D, G, and F).  The textural clay coat characteristic of extending pore 574 
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ward are observed within (A, C and F) and with greatest accumulation (thickness) observed 575 

within grain indentations (E and G). 576 

Figure 6. Clay coat textures showing the main morphological feature classification observed 577 

within surface sediment samples. A) Ridged clay coat. B) Bridged clay coat structure. C) 578 

Clumped clay coat. Note greatest thickness of attached coating within the grain indentation 579 

(enlarged in F).  Arrows indicate regions of clay coat coverage. 580 

Figure 7. Scanning electron microscope-energy dispersive spectrometry (SEM-EDS) image, 581 

showing clay coat and bulk sediment mineralogy for within muddy sand flat sediment (for 582 

location, see Fig. 1).  A) Backscattered electron image. B) SEM-EDS image of framework 583 

grain mineralogy. C) SEM-EDS image of the component clay fraction mineralogy.  D to F) 584 

SEM-EDS images of the distribution of illite, chlorite, and kaolinite.  Arrows indicate regions 585 

of attached clay coating. 586 

Figure 8. Distribution map of surface clay coated sand grains within the Ravenglass Estuary 587 

(n = 195). Plotted are the surface distribution of classified areas in light grey signify at least 588 

partial clay coat coverage, with dark grey-black regions indicating extensive surface clay 589 

coated sand grains. 590 

Figure 9. Frequency histograms for all sediment samples, divided by depositional 591 

environment and clay coat bin class: (A) Total number of samples in each clay coat class. (B) 592 

Normalised data to reveal relative importance of different environments for optimum clay 593 

coat coverage.  Clay coat class 1 and 2 have minimal to compete absence of clay coats. 594 

Figure 10. Average grain size, lugworm population and clay fraction percentage plots for 595 

each representative clay coat bin class. 596 
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Figure 11. Distribution map indicating the literature-constrained Goldilocks zone of the 597 

optimum quantity of total clay (i.e. detrital-clay coated sand grains inhibiting quartz cement 598 

but not blocking pore throats). 599 

REFERENCES  600 

AAGAARD, P., JAHREN, J.S., HARSTAD, A.O., NILSEN, O., AND RAMM, M., 2000, Formation of grain-coating 601 
chlorite in sandstones. Laboratory synthesized vs. natural occurrences: Clay Minerals, v. 35, 602 
p. 261-269. 603 

AINSWORTH, R.B., VAKARELOV, B.K., AND NANSON, R.A., 2011, Dynamic spatial and temporal prediction of 604 
changes in depositional processes on clastic shorelines: toward improved subsurface 605 
uncertainty reduction and management: AAPG bulletin, v. 95, p. 267-297. 606 

AJDUKIEWICZ, J.M., AND LARESE, R.E., 2012, How clay grain coats inhibit quartz cement and preserve 607 
porosity in deeply buried sandstones: Observations and experiments: American Association 608 
of  Petroleum Geologists Bulletin, v. 96, p. 2091-2119. 609 

AJDUKIEWICZ, J.M., NICHOLSON, P.H., AND ESCH, W.L., 2010, Prediction of deep reservoir quality using 610 
early diagenetic process models in the Jurassic Norphlet Formation, Gulf of Mexico: 611 
American Association of Petroleum Geologists Bulletin, v. 94, p. 1189-1227. 612 

AL-RAMADAN, K.A., HUSSAIN, M., IMAM, B., AND SANER, S., 2004, Lithologic characteristics and diagenesis 613 
of the Devonian Jauf sandstone at Ghawar Field, eastern Saudi Arabia: Marine and 614 
Petroleum Geology, v. 21, p. 1221-1234. 615 

ARMITAGE, P.J., WORDEN, R.H., FAULKNER, D.R., BUTCHER, A.R., AND ESPIE, A.A., 2016, Permeability of the 616 
Mercia Mudstone: suitability as caprock to carbon capture and storage sites: Geofluids, v. 617 
16, p. 26-42. 618 

BILLAULT, V., BEAUFORT, D., BARONNET, A., AND LACHARPAGNE, J.C., 2003, A nanopetrographic and textural 619 
study of grain-coating chlorites in sandstone reservoirs: Clay Minerals, v. 38, p. 315-328. 620 

BLOCH, S., LANDER, R.H., AND BONNELL, L., 2002, Anomalously high porosity and permeability in deeply 621 
buried sandstone reservoirs: Origin and predictability: American Association of Petroleum 622 
Geologists Bulletin, v. 86, p. 301-328. 623 

BOUSHER, A., 1999, Ravenglass Estuary: Basic characteristics and evaluation of restoration options, 624 
Restrad-Td. 625 

COCKER, J., KNOX, W., LOTT, G., AND MILODOWSKI, A., 2003, Petrologic controls on reservoir quality in the 626 
Devonian Jauf Formation sandstones of Saudi Arabia: Geofrontier, v. 1, p. 6-11. 627 

CRONE, A.J., 1975, Laboratory and field studies of mechanically infiltrated matrix clay in arid fluvial 628 
sediments, University of Colorado. 629 

DANESHVAR, E., 2011, Role of provenance on clay minerals and their distribution in modern estuaries: 630 
University of Liverpool, 236 p. 631 

DANESHVAR, E., AND WORDEN, R.H., 2016, Feldspar alteration and Fe minerals: origin, distribution and 632 
implications for sandstone reservoir quality in estuarine sediments. In: Armitage, P. J., 633 
Butcher, A. R., Churchill, J. M., Csoma, A. E., Hollis, C., Lander, R. H., Omma, J. E. & Worden, 634 
R. H. (eds) 2016. Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and 635 
Prediction. : Geological Society, London, Special Publications, v. 435. 636 

DOWEY, P.J., 2013, Prediction of clay minerals and grain coatings in sandstone reservoirs utilising 637 
ancient examples and modern analogue studies: University of Liverpool. 638 

DOWEY, P.J., HODGSON, D.M., AND WORDEN, R.H., 2012, Pre-requisites, processes, and prediction of 639 
chlorite grain coatings in petroleum reservoirs: A review of subsurface examples: Marine and 640 
Petroleum Geology, v. 32, p. 63-75. 641 



29 
 

DYER, K.R., 1979, Estuarine hydrography and sedimentation: a handbook, Cambridge University Press 642 
Cambridge. 643 

EHRENBERG, S.N., 1993, Preservation of anomalously high-porosity in deeply buried sandstones by 644 
grain coating chlorite - examples from the Norwegian continental shelf: American 645 
Association of Petroleum Geologists Bulletin, v. 77, p. 1260-1286. 646 

EHRENBERG, S.N., 1997, Influence of depositional sand quality and diagenesis on porosity and 647 
permeability: Examples from Brent Group Reservoirs, northern North Sea (vol 67, pg 202, 648 
1997): Journal of Sedimentary Research, v. 67, p. 618-618. 649 

FRANKS, S.G., AND ZWINGMANN, H., 2010, Origin and timing of late diagenetic illite in the Permian-650 
Carboniferous Unayzah sandstone reservoirs of Saudi Arabia: American Association of 651 
Petroleum Geologists Bulletin, v. 94, p. 1133-1159. 652 

GAUPP, R., AND OKKERMAN, J.A., 2011, Diagenesis and reservoir quality of Rotliegend Sandstones in the 653 
Northern Netherlands - A review, in Grotsch, J., and Gaupp, R., eds., Permian Rotliegend of 654 
the Netherlands: Society for Sedimentary Geology Special Publication, p. 193-226. 655 

GOULD, K., PE-PIPER, G., AND PIPER, D.J.W., 2010, Relationship of diagenetic chlorite rims to 656 
depositional facies in Lower Cretaceous reservoir sandstones of the Scotian Basin: 657 
Sedimentology, v. 57, p. 587-610. 658 

GOULD, K.M., PIPER, D.J.W., AND PE-PIPER, G., 2012, Lateral variation in sandstone lithofacies from 659 
conventional core, Scotian Basin: implications for reservoir quality and connectivity: 660 
Canadian Journal of Earth Sciences, v. 49, p. 1478-1503. 661 

GRIGSBY, J.D., 2001, Origin and growth mechanism of authigenic chlorite in sandstones of the lower 662 
Vicksburg Formation, south Texas: Journal of Sedimentary Research, v. 71, p. 27-36. 663 

HEALD, M.T., AND BAKER, G.F., 1977, Diagenesis of Mt Simon and Rose Run Sandstones in western 664 
West Virginia and southern Ohio: Journal of Sedimentary Petrology, v. 47, p. 66-77. 665 

HOUSEKNECHT, D.W., 1992, Clay minerals in Atokan deep-water sandstone facies, Arkoma basin: 666 
origins and influence on diagenesis and reservoir quality. 667 

HOUSEKNECHT, D.W., AND PITTMAN, E.D., 1992, Origin, diagenesis and petrophysics of clay minerals in 668 
sandstones SEPM Special Publication: Tulsa Oklahoma, Society of Economic Paleontologists 669 
and Mineralogists. 670 

JERNIGAN, D.L., AND MCATEE, J.L., 1975, Critical point drying of electron microscope samples of clay 671 
minerals: Clays and Clay Minerals, v. 23, p. 161-162. 672 

LANDER, R.H., LARESE, R.E., AND BONNELL, L.M., 2008, Toward more accurate quartz cement models: The 673 
importance of euhedral versus noneuhedral growth rates: American Association of 674 
Petroleum Geologists Bulletin, v. 92, p. 1537-1563. 675 

LLOYD, J.M., ZONG, Y., FISH, P., AND INNES, J.B., 2013, Holocene and Lateglacial relative sea-level change 676 
in north-west England: implications for glacial isostatic adjustment models: Journal of 677 
Quaternary Science, v. 28, p. 59-70. 678 

LUO, J.L., MORAD, S., SALEM, A., KETZER, J.M., LEI, X.L., GUO, D.Y., AND HLAL, O., 2009, Impact of diagenesis 679 
on reservoir quality evolution in fluvial and lacustrine-deltaic sandstones: evidence from 680 
Jurassic and Triassic sandstones from the Ordos Basin, China: Journal of Petroleum Geology, 681 
v. 32, p. 79-102. 682 

MATLACK, K.S., HOUSEKNECHT, D.W., AND APPLIN, K.R., 1989, Emplacement of clay into sand by 683 
infiltration: Journal of Sedimentary Petrology, v. 59, p. 77-87. 684 

MCILROY, D., WORDEN, R.H., AND NEEDHAM, S.J., 2003, Faeces, clay minerals and reservoir potential: 685 
Journal of the Geological Society, v. 160, p. 489-493. 686 

MOHAN KESSARKAR, P., PURNACHANDRA RAO, V., SHYNU, R., MEHRA, P., AND VIEGAS, B.E., 2010, The nature 687 
and distribution of particulate matter in the Mandovi estuary, central west coast of India: 688 
Estuaries and coasts, v. 33, p. 30-44. 689 

MORAD, S., AL-RAMADAN, K., KETZER, J.M., AND DE ROS, L.F., 2010, The impact of diagenesis on the 690 
heterogeneity of sandstone reservoirs: A review of the role of depositional facies and 691 



30 
 

sequence stratigraphy: American Association of Petroleum Geologists Bulletin, v. 94, p. 692 
1267-1309. 693 

MORAES, M.A.S., AND DE ROS, L.F., 1992, Depositional, infiltrated and authigenic clays in fluvial 694 
sandstones of the Jurassic Sergie Formation, Reconcavo Basin, northeastrn Brazil: In: Origin, 695 
diagenesis and petrophysics of clay minerals in sandstones (eds. Houseknecht, D.W. and 696 
Pittman, E.D.) SEPM Special Publication, v. 47, p. 197-208. 697 

MOSELEY, F., 1978, The Geology of the Lake District, Occoasional Publication: Leeds, Yorkshire 698 
Geological Society, p. 284. 699 

NEEDHAM, S.J., WORDEN, R.H., AND CUADROS, J., 2006, Sediment ingestion by worms and the production 700 
of bio-clays: a study of macrobiologically enhanced weathering and early diagenetic 701 
processes: Sedimentology, v. 53, p. 567-579. 702 

NEEDHAM, S.J., WORDEN, R.H., AND MCILROY, D., 2004, Animal-sediment interactions: the effect of 703 
ingestion and excretion by worms on mineralogy: Biogeosciences, v. 1, p. 113-121. 704 

NEEDHAM, S.J., WORDEN, R.H., AND MCILROY, D., 2005, Experimental production of clay rims by 705 
macrobiotic sediment ingestion and excretion processes: Journal of Sedimentary Research, 706 
v. 75, p. 1028-1037. 707 

OZKAN, A., CUMELLA, S.P., MILLIKEN, K.L., AND LAUBACH, S.E., 2011, Prediction of lithofacies and reservoir 708 
quality using well logs, Late Cretaceous Williams Fork Formation, Mamm Creek field, 709 
Piceance Basin, Colorado: American Association of Petroleum Geologists Bulletin, v. 95, p. 710 
1699-1723. 711 

PIERCE, J., AND NICHOLS, M.M., 1986, Change of particle composition from fluvial into an estuarine 712 
environment: Rappahannock River, Virginia: Journal of coastal research, p. 419-425. 713 

PITTMAN, E.D., LARESE, R.E., AND HEALD, M.T., 1992, Clay coats: occurrence and relevance to 714 
preservation of porosity in sandstones: In: Origin, diagenesis and petrophysics of clay 715 
minerals in sandstones (eds. Houseknecht, D.W. and Pittman, E.D.) SEPM Special Publication, 716 
v. 47, p. 241-255. 717 

SANTOS, I.R., EYRE, B.D., AND HUETTEL, M., 2012, The driving forces of porewater and groundwater flow 718 
in permeable coastal sediments: A review: Estuarine, Coastal and Shelf Science, v. 98, p. 1-719 
15. 720 

SHAMMARI, S., FRANKS, S., AND SOLIMAN, O., 2010, Depositional and Facies Controls on 721 
Infiltrated/Inherited Clay Coatings: Unayzah Sandstones, Saudi Arabia: GEO 2010. 722 

STORVOLL, V., BJORLYKKE, K., KARLSEN, D., AND SAIGAL, G., 2002, Porosity preservation in reservoir 723 
sandstones due to grain-coating illite: a study of the Jurassic Garn Formation from the Kristin 724 
and Lavrans fields, offshore Mid-Norway: Marine and Petroleum Geology, v. 19, p. 767-781. 725 

WILSON, M.D., 1992, Inherited grain-rimming clays in sandstones from eolian and shelf environments: 726 
their origin and control on reservoir properties: In: Origin, diagenesis and petrophysics of 727 
clay minerals in sandstones (eds. Houseknecht, D.W. and Pittman, E.D.) SEPM Special 728 
Publication, v. 47, p. 209-225. 729 

WISE, S., SMELLIE, J., AGHIB, F., JARRARD, R., AND KRISSEK, L., 2001, Authigenic smectite clay coats in CRP-3 730 
drillcore, Victoria Land Basin, Antarctica, as a possible indicator of fluid flow: a progress 731 
report: Terra Antartica, v. 8, p. 281-298. 732 

WORDEN, R.H., AND MORAD, S., 2000, Quartz cementation in sandstones: a review of the key 733 
controversies In: Quartz cementation in sandstones (eds. Worden, R.H. and Morad, S.) 734 
International Association of Sedimentologists Special Publications, p. 1-20. 735 

WORDEN, R.H., AND MORAD, S., 2003, Clay minerals in sandstones: Controls on formation, distribution 736 
and evolution: In: Clay mineral cements in sandstones (eds. Worden, R.H. and Morad, S.) 737 
International Association of Sedimentologists Special Publications, v. 34, p. 3-41. 738 

 739 
























	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11

