123 research outputs found

    Joint research project on the aquatic ecotoxicity of organo-aluminium: Chemical reactions. First interim report

    Get PDF
    The overall goal of the joint research project is to relate the chemical reactions involved in the formation of organo-aluminium complexes under acid conditions to their toxic effects on the physiology of aquatic organisms. Finally, this research is intended to predict toxic effects arising from acidity and aluminium under varying environmental conditions. This interim report examines the chemical modelling of ion-binding by humic substances where a computer model has been developed and is being tested using field data, and conditions required for the precipitation of aluminium in surface waters

    Improving mortality rate estimates for management of the Queensland saucer scallop fishery

    Get PDF
    This research was undertaken on the Queensland saucer scallop (Ylistrum balloti) fishery in southeast Queensland, which is an important component of the Queensland East Coast Otter Trawl Fishery (QECOTF). The research was undertaken by a collaborative team from the Queensland Department of Agriculture and Fisheries, James Cook University (JCU) and the Centre for Applications in Natural Resource Mathematics (CARM), University of Queensland and focused on 1) an annual fishery-independent trawl survey of scallop abundance, 2) relationships between scallop abundance and physical properties of the seafloor, and 3) deriving an updated estimate of the scallop’s natural mortality rate. The scallop fishery used to be one of the state’s most valuable commercially fished stocks with the annual catch peak at just under 2000 t (adductor muscle meat-weight) in 1993 valued at about $30 million, but in recent years the stock has declined and is currently considered to be overfished. Results from the study are used to improve monitoring, stock assessment and management advice for the fishery

    Cutaneous infection by Mycobacterium haemophilum and kansasii in an IgA-deficient man

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of infections by nontuberculous mycobacteria (NTM) has steadily increased over the past decades, especially in immunocompromised patients.</p> <p>Case presentation</p> <p>We present a patient with IgA-deficiency and mixed cutaneous infection by two slowly growing mycobacteria, <it>Mycobacterium </it>(<it>M.</it>) <it>haemophilum </it>and <it>M. kansasii.</it></p> <p>Conclusions</p> <p>Cutaneous <it>M. haemophilum </it>infections most often result from HIV or transplantation-associated immunosuppression. Rarely, <it>M. haemophilum </it>may also infect healthy patients or iatrogenically immunosuppressed patients without transplantation. <it>M. kansasii </it>is one of the most frequent NTM and large awareness exists about its involvement in human diseases. Mycobacterial diagnosis of cutaneous infections should be considered in long-lasting skin lesions.</p

    Identification of a new European rabbit IgA with a serine-rich hinge region

    Get PDF
    <div><p>In mammals, the most striking IgA system belongs to Lagomorpha. Indeed, 14 IgA subclasses have been identified in European rabbits, 11 of which are expressed. In contrast, most other mammals have only one IgA, or in the case of hominoids, two IgA subclasses. Characteristic features of the mammalian IgA subclasses are the length and amino acid sequence of their hinge regions, which are often rich in Pro, Ser and Thr residues and may also carry Cys residues. Here, we describe a new IgA that was expressed in New Zealand White domestic rabbits of <i>IGHV</i>a1 allotype. This IgA has an extended hinge region containing an intriguing stretch of nine consecutive Ser residues and no Pro or Thr residues, a motif exclusive to this new rabbit IgA. Considering the amino acid properties, this hinge motif may present some advantage over the common IgA hinge by affording novel functional capabilities. We also sequenced for the first time the IgA14 CH2 and CH3 domains and showed that IgA14 and IgA3 are expressed.</p></div

    Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis

    Get PDF
    As clinical evidence supports a negative impact of dysfunctional energy metabolism on the disease progression in amyotrophic lateral sclerosis, it is vital to understand how the energy metabolic pathways are altered and whether they can be restored to slow disease progression. Possible approaches include increasing or re-routing catabolism of alternative fuel sources to supplement the glycolytic and mitochondrial pathways such as glycogen, ketone bodies and nucleosides. To analyse the basis of the catabolic defect in amyotrophic lateral sclerosis we have employed a novel phenotypic metabolic array. We have profiled fibroblasts and induced neuronal progenitor derived human iAstrocytes from C9orf72 amyotrophic lateral sclerosis patients compared to normal controls, measuring the rates of production of reduced nicotinamide adenine dinucleotides from 91 potential energy substrates. This approach has shown for the first time that C9orf72 human iAstrocytes and fibroblasts have an adenosine to inosine deamination defect caused by reduction of adenosine deaminase, which is also observed in iAstrocytes from sporadic patients. Patient derived iAstrocyte lines were more susceptible to adenosine-induced toxicity, which could be mimicked by inhibiting adenosine deaminase in control lines. Furthermore, adenosine deaminase inhibition in control iAstrocytes led to increased motor neuron toxicity in co-cultures, similar tothe levels observed with patient derived iAstrocytes. Bypassing metabolically the adenosine deaminase defect by inosine supplementation was beneficial bioenergetically in vitro, increasing glycolytic energy output and leading to an increase in motor neuron survival in co-cultures with iAstrocytes. Inosine supplementation, in combination with modulation of the level of adenosine deaminase may represent a beneficial therapeutic approach to evaluate in patients with amyotrophic lateral sclerosis

    Selective IgA Deficiency

    Get PDF
    Immunoglobulin A (IgA) deficiency is the most common primary immunodeficiency defined as decreased serum level of IgA in the presence of normal levels of other immunoglobulin isotypes. Most individuals with IgA deficiency are asymptomatic and identified coincidentally. However, some patients may present with recurrent infections of the respiratory and gastrointestinal tracts, allergic disorders, and autoimmune manifestations. Although IgA is the most abundant antibody isotype produced in the body, its functions are not clearly understood. Subclass IgA1 in monomeric form is mainly found in the blood circulation, whereas subclass IgA2 in dimeric form is the dominant immunoglobulin in mucosal secretions. Secretory IgA appears to have prime importance in immune exclusion of pathogenic microorganisms and maintenance of intestinal homeostasis. Despite this critical role, there may be some compensatory mechanisms that would prevent disease manifestations in some IgA-deficient individuals. In IgA deficiency, a maturation defect in B cells to produce IgA is commonly observed. Alterations in transmembrane activator and calcium modulator and cyclophilin ligand interactor gene appear to act as disease-modifying mutations in both IgA deficiency and common variable immunodeficiency, two diseases which probably lie in the same spectrum. Certain major histocompatibility complex haplotypes have been associated with susceptibility to IgA deficiency. The genetic basis of IgA deficiency remains to be clarified. Better understanding of the production and function of IgA is essential in elucidating the disease mechanism in IgA deficiency

    A Pilot Study on Developing Mucosal Vaccine against Alveolar Echinococcosis (AE) Using Recombinant Tetraspanin 3: Vaccine Efficacy and Immunology

    Get PDF
    Humans and rodents become infected with E. multilocularis by oral ingesting of the eggs, which then develop into cysts in the liver and progress an endless proliferation. Untreated AE has a fatality rate of >90% in humans. Tetraspanins have been identified in Schistosoma and showed potential as the prospective vaccine candidates. In our recent study, we first identified seven tetraspanins in E. multilocularis and evaluated their protective efficacies as vaccines against AE when subcutaneously administered to BALB/c mice. Mucosal immunization of protective proteins is able to induce strong local and systemic immune responses, which might play a crucial role in protecting humans against E. multilocularis infection via the intestine, blood and liver. We focused on Em-TSP3, which achieved significant vaccine efficacy via both s.c. and i.n. routes. The adjuvanticity of nontoxic CpG OND as i.n. vaccine adjuvant was evaluated. The widespread expression of Em-TSP3 in all the developmental stages of E. multilocularis, and the strong local and systemic immune responses evoked by i.n. administration of rEm-TSP3 with CpG OND adjuvant suggest that this study might open the way for developing efficient, nontoxic human mucosal vaccines against AE

    Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations

    Get PDF
    Intravenous and subcutaneous immunoglobulin preparations, consisting of IgG class antibodies, are increasingly used to treat a broad range of pathological conditions, including humoral immune deficiencies, as well as acute and chronic inflammatory or autoimmune disorders. A plethora of Fab- or Fc-mediated immune regulatory mechanisms has been described that might act separately or in concert, depending on pathogenesis or stage of clinical condition. Attempts have been undertaken to improve the efficacy of polyclonal IgG preparations, including the identification of relevant subfractions, mild chemical modification of molecules, or modification of carbohydrate side chains. Furthermore, plasma-derived IgA or IgM preparations may exhibit characteristics that might be exploited therapeutically. The need for improved treatment strategies without increase in plasma demand is a goal and might be achieved by more optimal use of plasma-derived proteins, including the IgA and the IgM fractions. This article provides an overview on the current knowledge and future strategies to improve the efficacy of regular IgG preparations and discusses the potential of human plasma-derived IgA, IgM, and preparations composed of mixtures of IgG, IgA, and IgM

    A review of the human vs. porcine female genital tract and associated immune system in the perspective of using minipigs as a model of human genital Chlamydia infection

    Get PDF
    International audienceAbstractSexually transmitted diseases constitute major health issues and their prevention and treatment continue to challenge the health care systems worldwide. Animal models are essential for a deeper understanding of the diseases and the development of safe and protective vaccines. Currently a good predictive non-rodent model is needed for the study of genital chlamydia in women. The pig has become an increasingly popular model for human diseases due to its close similarities to humans. The aim of this review is to compare the porcine and human female genital tract and associated immune system in the perspective of genital Chlamydia infection. The comparison of women and sows has shown that despite some gross anatomical differences, the structures and proportion of layers undergoing cyclic alterations are very similar. Reproductive hormonal cycles are closely related, only showing a slight difference in cycle length and source of luteolysing hormone. The epithelium and functional layers of the endometrium show similar cyclic changes. The immune system in pigs is very similar to that of humans, even though pigs have a higher percentage of CD4+/CD8+ double positive T cells. The genital immune system is also very similar in terms of the cyclic fluctuations in the mucosal antibody levels, but differs slightly regarding immune cell infiltration in the genital mucosa - predominantly due to the influx of neutrophils in the porcine endometrium during estrus. The vaginal flora in Göttingen Minipigs is not dominated by lactobacilli as in humans. The vaginal pH is around 7 in Göttingen Minipigs, compared to the more acidic vaginal pH around 3.5–5 in women. This review reveals important similarities between the human and porcine female reproductive tracts and proposes the pig as an advantageous supplementary model of human genital Chlamydia infection
    corecore