204 research outputs found

    Parallel-propagating Fluctuations at Proton-kinetic Scales in the Solar Wind are Dominated by Kinetic Instabilities

    Get PDF
    We use magnetic helicity to characterise solar wind fluctuations at proton-kinetic scales from Wind observations. For the first time, we separate the contributions to helicity from fluctuations propagating at angles quasi-parallel and oblique to the local mean magnetic field, B0\mathbf{B}_0. We find that the helicity of quasi-parallel fluctuations is consistent with Alfv\'en-ion cyclotron and fast magnetosonic-whistler modes driven by proton temperature anisotropy instabilities and the presence of a relative drift between α\alpha-particles and protons. We also find that the helicity of oblique fluctuations has little dependence on proton temperature anisotropy and is consistent with fluctuations from the anisotropic turbulent cascade. Our results show that parallel-propagating fluctuations at proton-kinetic scales in the solar wind are dominated by proton temperature anisotropy instabilities and not the turbulent cascade. We also provide evidence that the behaviour of fluctuations at these scales is independent of the origin and macroscopic properties of the solar wind.Comment: Accepted for publication in ApJL. 6 Pages, 3 figures, 1 tabl

    Coherent deflection pattern and associated temperature enhancements in the near-Sun solar wind

    Full text link
    Measurements of transverse magnetic field and velocity components from Parker Solar Probe have revealed a coherent quasi-periodic pattern in the near-Sun solar wind. As well as being Alfv\'enic and arc-polarised, these deflections were characterised by a consistent orientation and an increased proton core temperature, which was greater parallel to the magnetic field. We show that switchbacks represent the largest deflections within this underlying structure, which is itself consistent with the expected outflow from interchange reconnection simulations. Additionally, the spatial scale of the deflections was estimated to be around 11\,Mm on the Sun, comparable to the jetting activity observed at coronal bright points within the base of coronal plumes. Therefore, our results could represent the in situ signature of interchange reconnection from coronal bright points within plumes, complementing recent numerical and observational studies. We also found a consistent relationship between the proton core temperature and magnetic field angle across the Parker Solar Probe encounters and discussed how such a persistent signature could be more indicative of an in situ mechanism creating a local increase in temperature. In future, observations of minor ions, radio bursts and remote sensing images could help further establish the connection between reconnection events on the Sun and signatures in the solar wind

    Dependence of Solar Wind Proton Temperature on the Polarization Properties of Alfvénic Fluctuations at Ion-kinetic Scales

    Get PDF
    We use fluctuating magnetic helicity to investigate the polarization properties of Alfvénic fluctuations at ion-kinetic scales in the solar wind as a function of β p , the ratio of proton thermal pressure to magnetic pressure, and θ vB , the angle between the proton flow and local mean magnetic field, B 0. Using almost 15 yr of Wind observations, we separate the contributions to helicity from fluctuations with wavevectors, k, quasi-parallel and oblique to B 0, finding that the helicity of Alfvénic fluctuations is consistent with predictions from linear Vlasov theory. This result suggests that the nonlinear turbulent fluctuations at these scales share at least some polarization properties with Alfvén waves. We also investigate the dependence of proton temperature in the β p -θ vB plane to probe for possible signatures of turbulent dissipation, finding that it correlates with θ vB . The proton temperature parallel to B 0 is higher in the parameter space where we measure the helicity of right-handed Alfvénic fluctuations, and the temperature perpendicular to B 0 is higher where we measure left-handed fluctuations. This finding is inconsistent with the general assumption that by sampling different θ vB in the solar wind we can analyze the dependence of the turbulence distribution on θ kB , the angle between k and B 0. After ruling out both instrumental and expansion effects, we conclude that our results provide new evidence for the importance of local kinetic processes that depend on θ vB in determining proton temperature in the solar wind

    Reactivity of Gold Hydrides: O2 Insertion into the Au–H Bond

    Get PDF
    Dioxygen reacts with the gold(I) hydride (IPr)AuH under insertion to give the hydroperoxide, (IPr)AuOOH, a long-postulated reaction in gold catalysis and the first demonstration of O2 activation by Au-H in a well-defined system. Subsequent condensation gave the peroxide (IPr)Au-OO-Au(IPr) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene). The reaction kinetics are reported, as well as the reactivity of Au(I) hydrides with radical scavengers

    PS-FCN: A Flexible Learning Framework for Photometric Stereo

    Full text link
    This paper addresses the problem of photometric stereo for non-Lambertian surfaces. Existing approaches often adopt simplified reflectance models to make the problem more tractable, but this greatly hinders their applications on real-world objects. In this paper, we propose a deep fully convolutional network, called PS-FCN, that takes an arbitrary number of images of a static object captured under different light directions with a fixed camera as input, and predicts a normal map of the object in a fast feed-forward pass. Unlike the recently proposed learning based method, PS-FCN does not require a pre-defined set of light directions during training and testing, and can handle multiple images and light directions in an order-agnostic manner. Although we train PS-FCN on synthetic data, it can generalize well on real datasets. We further show that PS-FCN can be easily extended to handle the problem of uncalibrated photometric stereo.Extensive experiments on public real datasets show that PS-FCN outperforms existing approaches in calibrated photometric stereo, and promising results are achieved in uncalibrated scenario, clearly demonstrating its effectiveness.Comment: ECCV 2018: https://guanyingc.github.io/PS-FC

    The In Situ Signature of Cyclotron Resonant Heating

    Full text link
    The dissipation of magnetized turbulence is an important paradigm for describing heating and energy transfer in astrophysical environments such as the solar corona and wind; however, the specific collisionless processes behind dissipation and heating remain relatively unconstrained by measurements. Remote sensing observations have suggested the presence of strong temperature anisotropy in the solar corona consistent with cyclotron resonant heating. In the solar wind, in situ magnetic field measurements reveal the presence of cyclotron waves, while measured ion velocity distribution functions have hinted at the active presence of cyclotron resonance. Here, we present Parker Solar Probe observations that connect the presence of ion-cyclotron waves directly to signatures of resonant damping in observed proton-velocity distributions. We show that the observed cyclotron wave population coincides with both flattening in the phase space distribution predicted by resonant quasilinear diffusion and steepening in the turbulent spectra at the ion-cyclotron resonant scale. In measured velocity distribution functions where cyclotron resonant flattening is weaker, the distributions are nearly uniformly subject to ion-cyclotron wave damping rather than emission, indicating that the distributions can damp the observed wave population. These results are consistent with active cyclotron heating in the solar wind

    Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere

    Get PDF
    Context. Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the helio-sphere. Recent observations by Parker Solar Probe(PSP) have revealed the presence of patches of switchbacks on the scale of hours to days, separated by ‘quieter’ radial fields. Aims. We aim to further diagnose the origin of these patches using measurements of proton temperature anisotropy that can illuminate possible links to formation processes in the solar corona. Methods. We fit 3D bi-Maxwellian functions to the core of proton velocity distributions measured by the SPAN-Ai instrument onboard PSP to obtain the proton parallel, Tp,‖, and perpendicular, Tp,⊥, temperature. Results. We show that the presence of patches is highlighted by a transverse deflection in the flow and magnetic field away from the radial direction. These deflections are correlated with enhancements in Tp,‖, while Tp,⊥remains relatively constant. Patches sometimes exhibit small proton and electron density enhancements. Conclusions. We interpret that patches are not simply a group of switchbacks, but rather switchbacks are embedded within a larger-scale structure identified by enhanced Tp,‖that is distinct from the surrounding solar wind. We suggest that these observations are consistent with formation by reconnection-associated mechanisms in the corona
    corecore