609 research outputs found
Quantum dynamics of the avian compass
The ability of migratory birds to orient relative to the Earth's magnetic
field is believed to involve a coherent superposition of two spin states of a
radical electron pair. However, the mechanism by which this coherence can be
maintained in the face of strong interactions with the cellular environment has
remained unclear. This Letter addresses the problem of decoherence between two
electron spins due to hyperfine interaction with a bath of spin 1/2 nuclei.
Dynamics of the radical pair density matrix are derived and shown to yield a
simple mechanism for sensing magnetic field orientation. Rates of dephasing and
decoherence are calculated ab initio and found to yield millisecond coherence
times, consistent with behavioral experiments
Reconstruction and Analysis of the Chukchi Sea Circulation in 1990-1991
The Chukchi Sea (CS) circulation reconstructed for September 1990 to October 1991 from sea ice and ocean data is presented and analyzed. The core of the observational data used in this study comprises the records from 12 moorings deployed in 1990 and 1991 in U. S. and Russian waters and two hydrographic surveys conducted in the region in the fall of 1990 and 1991. The observations are processed by a two-step data assimilation procedure involving the Pan-Arctic Ice-Ocean Modeling and Assimilation System (employing a nudging algorithm for sea ice data assimilation) and the Semi-implicit Ocean Model [utilizing a conventional four-dimensional variational (4D-var) assimilation technique]. The reconstructed CS circulation is studied to identify pathways and assess residence times of Pacific water in the region; quantify the balances of volume, freshwater, and heat content; and determine the leading dynamical factors configuring the CS circulation. It is found that in 1990-1991 (high AO index and a cyclonic circulation regime) Pacific water transiting the CS toward the Canada basin followed two major pathways, namely via Herald Canyon (Herald branch of circulation, 0.23 Sv) and between Herald Shoal and Cape Lisburne (central branch of circulation and Alaskan Coastal Current, 0.32 Sv). The annual mean flow through Long Strait was negligible (0.01 Sv). Typical residence time of Pacific water in the region varied between 150 days for waters entering the CS in September and 270 days for waters entering in February/March. Momentum balance analysis reveals that geostrophic balance between barotropic pressure gradient and Coriolis force dominated for most of the year. Baroclinic effects were important for circulation only in the regions with large horizontal salinity gradients associated with the fresh Alaskan and Siberian coastal currents and the Cape Lisburne and Great Siberian polynyas. In the polynyas, the baroclinic effects were due to strong salinification and convection processes associated with sea ice formation
FUSE and HST STIS Observations of Hot and Cold Gas in the AB Aurigae System
We present the first observations of a Herbig Ae star with a circumstellar
disk by the Far Ultraviolet Spectroscopic Explorer (FUSE), as well as a
simultaneous observation of the star obtained with the Hubble Space Telescope
Space Telescope Imaging Spectrograph (STIS). The spectra of AB Aurigae show
emission and absorption features arising from gasses that have a wide range in
temperature, from hot OVI emission to cold molecular hydrogen and CO
absorption. Emissions from the highly ionized species OVI and CIII present in
the FUSE spectrum are redshifted, while absorption features arising from
low-ionization species like OI, NI, and SiII are blueshifted and show
characteristic stellar wind line-profiles. We find the total column density of
molecular hydrogen toward AB Aur from the FUSE apectrum, N(H_2) = (6.8 +/- 0.5)
x 10^19 cm^-2. The gas kinetic temperature of the molecular hydrogen derived
from the ratio N(J=1)/N(J=0) is 65 +/- 4 K. The column density of the CO
observed in the STIS spectrum is N(CO) = (7.1 +/- 0.5) x 10^13 cm^-2, giving a
CO/H_2 ratio of (1.04 +/- 0.11) x 10^-6. We also use the STIS spectrum to find
the column density of HI, permitting us to calculate the total column density
of hydrogen atoms, the fractional abundance of H_2, and the gas-to-dust ratio.Comment: 5 pages, including 6 figures. LaTex2e (emulateapj5.sty). Accepted for
publication in ApJ Letter
FUSE Observations of Intrinsic Absorption in the Seyfert 1 Galaxy Mrk 509
We present far-ultraviolet spectra of the Seyfert 1 galaxy Mrk 509 obtained
in 1999 November with the Far Ultraviolet Spectroscopic Explorer (FUSE). Our
data span the observed wavelength range 915-1185 A at a resolution of ~20 km/s.
The spectrum shows a blue continuum, broad OVI 1032,1038 emission, and a broad
CIII 977 emission line. Superposed on these emission components, we resolve
associated absorption lines of OVI 1032,1038, CIII 977, and Lyman lines through
Lzeta. Seven distinct kinematic components are present, spanning a velocity
range of -440 to +170 km/s relative to the systemic velocity. The absorption is
clustered in two groups, one centered at -370m km/s and another at the systemic
velocity. The blue-shifted cluster may be associated with the extended line
emission visible in deep images of Mrk 509 obtained by Phillips et al. Although
several components appear to be saturated, they are not black at their centers.
Partial covering or scattering permits ~7% of the broad-line or continuum flux
to be unaffected by absorption. Of the multiple components, only one has the
same ionization state and column density as highly ionized gas that produces
the OVII and OVIII ionization edges in X-ray spectra of Mrk 509.
This paper will appear in a special issue of Astrophysical Journal Letters
devoted to the first scientific results from the FUSE mission.Comment: To appear in the Astrophysical Journal (Letters). 4 pages, 3 color
PostScript figures. Figures are best viewed and printed in color. Added
acknowledgment that this is one of many papers to be published in a special
issue of ApJL devoted to the first scientific results from the FUSE missio
Limits on the Optical Brightness of the Epsilon Eridani Dust Ring
The STIS/CCD camera on the {\em Hubble Space Telescope (HST)} was used to
take deep optical images near the K2V main-sequence star Eridani in
an attempt to find an optical counterpart of the dust ring previously imaged by
sub-mm observations. Upper limits for the optical brightness of the dust ring
are determined and discussed in the context of the scattered starlight expected
from plausible dust models. We find that, even if the dust is smoothly
distributed in symmetrical rings, the optical surface brightness of the dust,
as measured with the {\em HST}/STIS CCD clear aperture at 55 AU from the star,
cannot be brighter than about 25 STMAG/". This upper limit excludes some
solid grain models for the dust ring that can fit the IR and sub-mm data.
Magnitudes and positions for 59 discrete objects between 12.5" to 58"
from Eri are reported. Most if not all of these objects are likely
to be background stars and galaxies.Comment: Revision corrects author lis
PDS 144: the first confirmed Herbig Ae-Herbig Ae wide binary
PDS 144 is a pair of Herbig Ae stars that are separated by 5.'' 35 on the sky. It has previously been shown to have an A2Ve Herbig Ae star viewed at 83 degrees inclination as its northern member and an A5Ve Herbig Ae star as its southern member. Direct imagery revealed a disk occulting PDS 144 N-the first edge-on disk observed around a Herbig Ae star. The lack of an obvious disk in direct imagery suggested PDS 144 S might be viewed face-on or not physically associated with PDS 144 N. Multi-epoch Hubble Space Telescope imagery of PDS 144 with a 5 year baseline demonstrates PDS 144 N & S are comoving and have a common proper motion with TYC 6782-878-1. TYC 6782-878-1 has previously been identified as a member of Upper Sco sub-association A at d = 145 +/- 2 pc with an age of 5-10 Myr. Ground-based imagery reveals jets and a string of Herbig-Haro knots extending 13' (possibly further) which are aligned to within 7 degrees +/- 6 degrees on the sky. By combining proper motion data and the absence of a dark mid-plane with radial velocity data, we measure the inclination of PDS 144 S to be i = 73 degrees +/- 7 degrees. The radial velocity of the jets from PDS 144 N & S indicates they, and therefore their disks, are misaligned by 25 degrees +/- 9 degrees. This degree of misalignment is similar to that seen in T Tauri wide binaries.Peer reviewe
Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 from the Nuclear Stellar Dynamics
We analyze the nuclear stellar dynamics of the SB0 galaxy NGC 1023, utilizing
observational data both from the Space Telescope Imaging Spectrograph aboard
the Hubble Space Telescope and from the ground. The stellar kinematics measured
from these long-slit spectra show rapid rotation (V = 70 km/s at a distance of
0.1 arcsec = 4.9 pc from the nucleus) and increasing velocity dispersion toward
the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar
kinematics assuming an axisymmetric mass distribution with both two and three
integrals of motion. Both modeling techniques point to the presence of a
central dark compact mass (which presumably is a supermassive black hole) with
confidence > 99%. The isotropic two-integral models yield a best-fitting black
hole mass of (6.0 +/- 1.4) x 10^7 M_sun and mass-to-light ratio (M/L_V) of 5.38
+/- 0.08, and the goodness-of-fit (chi^2) is insensitive to reasonable values
for the galaxy's inclination. The three-integral models, which
non-parametrically fit the observed line-of-sight velocity distribution as a
function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4)
x 10^7 M_sun and M/L_V of 5.56 +/- 0.02 (internal errors), and the edge-on
models are vastly superior fits over models at other inclinations. The internal
dynamics in NGC 1023 as suggested by our best-fit three-integral model shows
that the velocity distribution function at the nucleus is tangentially
anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear
line of sight velocity distribution has enhanced wings at velocities >= 600
km/s from systemic, suggesting that perhaps we have detected a group of stars
very close to the central dark mass.Comment: 21 pages, 12 figures, accepted in the Astrophysical Journa
The Heavy Element Enrichment of Lyman alpha Clouds in the Virgo Supercluster
Using high S/N STIS echelle spectra (FWHM=7 km/s) of 3C 273, we constrain the
metallicities of two Lya clouds in the vicinity of the Virgo cluster. We detect
C II, Si II, and Si III absorption lines in the Lya absorber at z = 0.00530.
Previous observations with FUSE have revealed Ly beta - Ly theta lines at this
redshift, thereby accurately constraining N(H I). We model the ionization of
the gas and derive [C/H] = -1.2^{+0.3}_{-0.2}, [Si/C] = 0.2+/-0.1, and log
n_{H} = -2.8+/-0.3. The model implies a small absorber thickness, ~70 pc, and
thermal pressure p/k ~ 40 cm^{-3} K. It is most likely that the absorber is
pressure confined by an external medium because gravitational confinement would
require a very high ratio of dark matter to baryonic matter. Based on Milky Way
sight lines in which carbon and silicon abundances have been reliably measured
in the same interstellar cloud (including new measurements presented herein),
we argue that the overabundance of Si relative to C is not due to dust
depletion. Instead, this probably indicates that the gas has been predominately
enriched by Type II supernovae. Such enrichment is most plausibly provided by
an unbound galactic wind, given the absence of galaxies within a projected
distance of 100 kpc and the presence of galaxies capable of driving a wind at
larger distances. We also constrain the metallicity and physical conditions of
the Virgo absorber at z = 0.00337 based on detections of O VI and H I and an
upper limit on C IV. If this absorber is collisionally ionized, the O VI/C IV
limit requires T > 10^{5.3} K. For either collisional ionization or
photoionization, we find that [O/H] > -2.0 at z = 0.00337.Comment: Final Ap.J. versio
- …