1,070 research outputs found

    Journeys Home: Tracking the most vulnerable

    Get PDF
    In 2010 the Australian Government commissioned The Melbourne Institute of Applied Economic and Social Research at the University of Melbourne to undertake "Journeys Home (JH): A Longitudinal Study of the Factors Affecting Housing Stability". The broad aim of JH was to improve the understanding of, and policy responses to, the diverse social, economic and personal factors related to homelessness and the risk of becoming homeless. Importantly, JH is one of the first longitudinal studies of homeless people that both draws it sample from a wide population and includes people who are vulnerable to homelessness. This paper provides a brief summary of the JH survey, discussing its aims, survey design, data collection process, and response outcomes over its six waves of data collection. It also highlights some of the initial research that has been published utilising the data since its release

    The symbol digit modalities test: normative data from a large nationally representative sample of Australians

    No full text
    Data from the Household, Income and Labour Dynamics in Australia (HILDA) Survey were used to calculate weighted norms for the written version of the Symbol Digits Modalities Test (SDMT) by gender, 5-year age groups and four levels of educational attainment. The sample comprised 14,456 Australians (47% male; age range 15–100), of whom 25% reported a tertiary qualification, 30% reported a technical qualification (diploma or trade certificate), 16% reported completing Year 12 (final year of high school), and 29% reported their highest level of educational attainment to be Year 11 or below. Participants were excluded if they reported physical or neurological conditions that limited performance. Age, gender, and education were all significantly associated with SDMT performance, as was poor health, and cultural background. The reported norms are of greater scope and precision than previously available and have utility in a range of clinical and research settings. Indeed, normative data for the SDMT that are representative of a national population have not previously been published.KK is supported by an Alzheimer’s Australia Dementia Research Foundation (AADRF) Fellowship (#DGP13F00005). PB is supported by Australian Research Council (ARC) Future Fellowship (#FT130101444)

    Spectral structure near the 11.3 micron emission feature

    Get PDF
    If the 11.3 micron emission feature seen in the spectra of many planetary nebulae, H II regions, and reflection nebulae is attributable to polycyclic aromatic hydrocarbons (PAHs), then additional features should be present between 11.3 and 13.0 microns. Moderate resolution spectra of NGC 7027, HD 44179, BD+30 deg 3639, and IRAS 21282+5050 are presented which show evidence for new emission features centered near 12.0 and 12.7 microns. These are consistent with an origin from PAHs and can be used to constrain the molecular structure of the family of PAHs responsible for the infrared features. There is an indication that coronene-like PAHs contribute far more to the emission from NGC 7027 than to the emission from HD 44179. The observed asymmetric profile of the 11.3 micron band in all the spectra is consistent with the slight anharmonicity expected in the C-H out-of-plane bending mode in PAHs. A series of repeating features between 10 and 11 microns in the spectrum of HD 44179 suggests a simple hydride larger than 2 atoms is present in the gas phase in this object

    Infrared spectra of WC10 planetary nebulae nuclei

    Get PDF
    The 5.2 to 8.0 micron spectra are presented for two planetary nebulae nuclei Hen1044 (He2-113) and CPD-56 8032. The unidentified infrared (UIR) emission bands at 6.2 microns, 6.9 microns, 7.7 microns are present in the spectra of Hen1044 and in CPD-56 8032, and the 8.6 micron band is present in the long wavelength shoulder of the 7.7 micron band in the spectrum of CPD-56 8032. The 8 to 13 micron spectra of these two stars by Aitken et. al. clearly show the presence of the 8.6 micron band in He2-113 while weakly resolving this feature in the spectra of CPD-56 8032. In their spectra the 11.3 micron band is also clearly detected in both objects. The 6.2 micron and 7.7 micron bands are characteristic of the infrared active C-C stretching modes in polycyclic aromatic hydrocarbons (PAHs); the 3.3 micron, 8.6 micron, and 11.3 micron bands are respectively assigned to the in-plane stretching mode, the in-plane bending mode, and the out-of-plane bending mode of the aromatic CH bond. The weak 6.9 micron emission feature is attributed to the UIR spectrum by Bregman et. al. The IRAS LRS spectra of He2-113 (IRAS 14562-5406) and CPD-56 8032 (IRAS 17047-5650) are presented. Cohen et. al. identify the broad plateau from 11.3 to 13.0 microns in the spectrum of He2-113 with increased hydrogenation of PAHs. This broad plateau is not seen in the LRS spectrum of CPD-56 8032. Also, He2-113 has greater infrared excess emission in the 17-22 micron region than does CPD-56 8032

    Airborne observations of the infrared emission bands

    Get PDF
    Earlier airborne studies of the infrared bands between 5 and 8 microns have now been extended to a sample of southern sources selected from the IRAS Low Resolution Spectra (LRS) atlas. The correlation between the strongest bands at 6.2 and 7.7 microns is now based on a total sample of 40 sources and is very strong. A new emission band at 5.2 microns, previously predicted for polycyclic aromatic hydrocarbons (PAHs), is recognized in 27 sources; it too correlates with the dominant 7.7 micron band, showing that the 5.2 micron feature also belongs to the generic spectrum of PAH features at 3.3, 5.6, 6.2, 6.2, 7.7, 8.7, 11.3, and 12.7 microns. Sufficient sources are had now to define the relative strengths of most of these bands in three separate nebular environments: planetaries, H II regions, and reflection nebulae. Significant variations are detected in the generic spectra of PAHs in these different environments which are echoed by variations in the exact wavelength of the strong 7.7 micron peak. The earlier suggestion that, in planetaries, the fraction of total emission observed by IRAS that is carried by the PAH emissions is correlated with nebular gas-phase C/O ratio is supported by the addition of newly-observed southern planetaries, including the unusually carbon-rich (WC10) nebular nuclei. These (WC10) nuclei also exhibit a strong plateau of emission linking the 6.2 and 7.7 micron features

    Observations of Titanium, Aluminum and Magnesium in the Lunar Exosphere by LADEE UVS

    Get PDF
    The Lunar Atmosphere and Dust Environment Explorer (LADEE) was an orbital lunar science mission designed to address the goals of the 2003 National Research Council decadal survey, the Lunar Exploration Analysis Group Roadmap, and the "Scientific Context for Exploration of the Moon" (SCEM) report, and has been recommended for execution by the 2011 Planetary Missions Decadal Survey. The LADEE mission goal was to determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. It will monitor variations in known gasses, such as sodium, potassium, argon and helium, and will search for other, as-yet-undetected gasses of both lunar and extra-lunar origin. Another goal of LADEE was to determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability

    GRAIN PROPERTIES OF COMET C/1995 O1 (HALE-BOPP)

    Get PDF
    We present the analysis of 7.6-13.2 μm infrared (IR) spectrophotometry (R 250) of comet C/1995 O1 (Hale-Bopp), in conjunction with concurrent observations that extend the wavelength coverage of the spectral energy distribution from near- to far-infrared wavelengths. The observations include temporal epochs preperihelion (1996 October and 1997 February UT), near perihelion (1997 April UT), and postperihelion (1997 June UT). Through the modeling of the thermal emission from small, amorphous carbon grains and crystalline and amorphous silicate grains in Hale-Bopp's coma, we find that as the comet approached perihelion, the grain size distribution (the Hanner modified power law) steepened (from N = 3.4 preperihelion to N = 3.7 near and postperihelion), along with an increase in the fractal porosity of larger (greater than 1 μm) grains. The peak of the grain size distribution remained constant (ap = 0.2 μm) at each epoch. We attribute the emergence of the 9.3 μm peak near perihelion to crystalline orthopyroxene grains released during epochs of high jet activity. Crystalline silicates (olivine and orthopyroxene) make up about 30% (by mass) of the submicron-sized (≤1 μm) dust grains in Hale-Bopp's coma during each epoch

    Lithofacies Control in Detrital Zircon Provenance Studies: Insights from the Cretaceous Methow Basin, Southern Canadian Cordillera

    Get PDF
    High-frequency sampling for detrital zircon analysis can provide a detailed record of fine-scale basin evolution by revealing the temporal and spatial variability of detrital zircon ages within clastic sedimentary successions. This investigation employed detailed sampling of two sedimentary successions in the Methow/Methow-Tyaughton basin of the southern Canadian Cordillera to characterize the heterogeneity of detrital zircon signatures within single lithofacies and assess the applicability of detrital zircon analysis in distinguishing fine-scale provenance changes not apparent in lithologic analysis of the strata. The Methow/Methow-Tyaughton basin contains two distinct stratigraphic sequences of middle Albian to Santonian clastic sedimentary rocks: submarine-fan deposits of the Harts Pass Formation/Jackass Mountain Group and fluvial deposits of the Winthrop Formation. Although both stratigraphic sequences displayed consistent ranges in detrital zircon ages on a broad scale, detailed sampling within each succession revealed heterogeneity in the detrital zircon age distributions that was systematic and predictable in the turbidite succession but unpredictable in the fluvial succession. These results suggest that a high-density sampling approach permits interpretation of fine-scale changes within a lithologically uniform turbiditic sedimentary succession, but heterogeneity within fluvial systems may be too large and unpredictable to permit accurate fine-scale characterization of the evolution of source regions. The robust composite detrital zircon age signature developed for these two successions permits comparison of the Methow/Methow-Tyaughton basin age signature with known plutonic source-rock ages from major plutonic belts throughout the Cretaceous North American margin. The Methow/Methow-Tyaughton basin detrital zircon age signature matches best with source regions in the southern Canadian Cordillera, requiring that the basin developed in close proximity to the southern Canadian Cordillera and providing evidence against large-scale dextral translation of the Methow terrane
    corecore