1,404 research outputs found

    The Application of the Human Engineering Modeling and Performance Laboratory for Space Vehicle Ground Processing Tasks at Kennedy Space Center

    Get PDF
    The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation

    Modeling and measurement of fault-tolerant multiprocessors

    Get PDF
    The workload effects on computer performance are addressed first for a highly reliable unibus multiprocessor used in real-time control. As an approach to studing these effects, a modified Stochastic Petri Net (SPN) is used to describe the synchronous operation of the multiprocessor system. From this model the vital components affecting performance can be determined. However, because of the complexity in solving the modified SPN, a simpler model, i.e., a closed priority queuing network, is constructed that represents the same critical aspects. The use of this model for a specific application requires the partitioning of the workload into job classes. It is shown that the steady state solution of the queuing model directly produces useful results. The use of this model in evaluating an existing system, the Fault Tolerant Multiprocessor (FTMP) at the NASA AIRLAB, is outlined with some experimental results. Also addressed is the technique of measuring fault latency, an important microscopic system parameter. Most related works have assumed no or a negligible fault latency and then performed approximate analyses. To eliminate this deficiency, a new methodology for indirectly measuring fault latency is presented

    How the asymmetry of internal potential influences the shape of I-V characteristic of nanochannels

    Full text link
    Ion transport in biological and synthetic nanochannels is characterized by such phenomena as ion current fluctuations, rectification, and pumping. Recently, it has been shown that the nanofabricated synthetic pores could be considered as analogous to biological channels with respect to their transport characteristics \cite{Apel, Siwy}. The ion current rectification is analyzed. Ion transport through cylindrical nanopores is described by the Smoluchowski equation. The model is considering the symmetric nanopore with asymmetric charge distribution. In this model, the current rectification in asymmetrically charged nanochannels shows a diode-like shape of I−VI-V characteristic. It is shown that this feature may be induced by the coupling between the degree of asymmetry and the depth of internal electric potential well. The role of concentration gradient is discussed

    Symptom profiles of psychiatric disorders based on graded disease classes: an illustration using data from the WHO International Pilot Study of Schizophrenia

    Get PDF
    The Grade of Membership (GoM) model is a classification procedure which allows a person to be a member of more than one diagnostic class. It simultaneously quantifies the degrees of membership in classes while generating the discrete symptom profiles or ‘pure types' describing classes. The model was applied to the symptomatology, history, and follow-up of 1065 cases in the WHO International Pilot Study of Schizophrenia. The model produced an eight diagnostic class or ‘pure type' solution, of which five were related to the diagnostic concepts of schizophrenia and paranoid disorder, two types were affective disorders, and one asymptomatic type. A subtype of paranoid schizophreniform disorder found primarily in developing countries was identified. There was a strong association between pure types and the original clinical and computer generated (CATEGO) diagnoses. A GoM based psychiatric classification might more clearly identify core disease processes than conventional classification models by filtering the confounding effects of individual heterogeneity from pure type definition

    Basic principles of postgrowth annealing of CdTe:Cl ingot to obtain semi-insulating crystals

    Full text link
    The process of annealing of a CdTe:Cl ingot during its cooling after growth was studied. The annealing was performed in two stages: a high-temperature stage, with an approximate equality of chlorine and cadmium vacancy concentrations established at the thermodynamic equilibrium between the crystal and vapors of volatile components, and a low-temperature stage, with charged defects interacting to form neutral associations. The chlorine concentrations necessary to obtain semi-insulating crystals were determined for various ingot cooling rates in the high temperature stage. The dependence of the chlorine concentration [Cl+Te] in the ingot on the temperature of annealing in the high-temperature stage was found. The carrier lifetimes and drift mobilities were obtained in relation to the temperature and cadmium vapor pressure in the postgrowth annealing of the ingot.Comment: 6 pages, 6 figure

    STATUS OF SOIL ELECTRICAL CONDUCTIVITY STUDIES BY CENTRAL STATE RESEARCHERS

    Get PDF
    Practical tools are needed to identify and advance sustainable management practices to optimize economic return, conserve soil, and minimize negative off-site environmental effects. The objective of this article is to review current research in non-saline soils of the central U.S. to consider bulk soil electrical conductivity (ECa) as an assessment tool for: (1) tracking N dynamics, (2) identifying management zones, (3) monitoring soil quality trends, and (4) designing and evaluating field-scale experiments. The interpretation and utility of ECa are highly location and soil specific; soil properties contributing to measured ECa must be clearly understood. In soils where ECa is driven by NO3-N, ECa has been used to track spatial and temporal variations in crop-available N (manure, compost, commercial fertilizer, and cover crop treatments) and rapidly assess N mineralization early in the growing season to calculate fertilizer rates for site-specific management (SSM). Selection of appropriate ECa sensors (direct contact, electromagnetic induction, or time domain reflectometry) may improve sensitivity to N fluctuations at specific soil depths. In a dryland cropping system where clay content dominates measured ECa, ECa -based management zones delineated soil productivity characteristics and crop yields. These results provided a framework effective for SSM, monitoring management-induced trends in soil quality, and appraising and statistically evaluating field-scale experiments. Use of ECa may foster a large-scale systems approach to research that encourages farmer involvement. Additional research is needed to investigate the interactive effects of soil, weather, and management on ECa as an assessment tool, and the geographic extent to which specific applications of this technology can be applied
    • 

    corecore