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1. INTRODUCTION

This report deals with both the modeling and measurement of fault-tolerant mul-

tiprocessors. A detailed analysis of systems of this type is desired because of the increas-

ing number of mission-critical situations in which they are used. One would like to be

able to predict the performance of such systems for various workloads and how well they

recover from system errors. The speed and effectiveness of the recovery procedures for a

fault-tolerant multiprocessor have a direct effect on its performance.

In the first part of this report we present a model to analyze the performance of a

unibus I multiprocessor. A closed queueing network is developed to study the effects of

workload variation on bus contention, processor utilization, and performance. This

development entails representing the computer system with a modified Stochastic Petri

Net(SPN). This aids in illustrating the operation of the specific system and determining

which factors have the most significant effect on performance.

A second component of this report pertains to the measuring of fault latency in a

multiprocessor environment. This entails explicitly determining the distribution of fault

latency and its significance in system modeling and analysis. The result of this research

shows that fault latency is significant and that the common assumption of a negligible

fault latency may be incorrect.

An existing system, the Fault-Tolerant Multiprocessor (FTMP) located at the

NASA AIRLAB[17-20], is used as a modeling example. Many experiments have been

made on this system to measure fault latency and performance related factom, such as

bus contention and idle processors. It is the results of some of these experiments that

justify the conclusions drawn concerning fault latency.

1This unibus can consist of redundant buses which logically act as a unibus.
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The rest of this report is organizedas follows.Section 2 deals with the modelingof

fault-tolerant unibus multiprocessorsand is dividedinto seven subsections. In Subsection

2.1 the performancemodelingis introduced. Subsection2.2 describesthe specific archi-

tecture being addressed, a real-time unibus multiprocessor,and its operation. Subsec-

tions 2.3 and 2.4 describe the SPN model and the closed queueing network model,

respectively. The results of the queueing model and closed form solutions are presented

in Subsection 2.5. The experimental system, FTMP, is describedbriefly in Subsection

2.6. Subsection 2.7 shows the queueing modelrepresentation of FTMP and some meas-

ured experimentalresults pertainingto its performance.

In Section 3, we present the technique of characterizingfault latency, which is an

important system parameter for modeling computersystems. Subsection 3.1 introduces

the concept and approach to measuring fault latency. A methodology for measuring

fault latency is outlined in Subsection 3.2. An example of the application of the method

on FTMP is shown with experimental results in Subsection 3.3. Finally, the report con-

eludes with Section 4.

2. PERFOR]_dANCE MODELING OF REAL-TIME MULTIPROCESSORS

2.1. Introduction

Representingthe operationofa computersystemby a structuredmodel isa popu-

larand naturalapproachto thestudyof a computer'sperformance.Many factorsneed

to be incorporatedintothemodel sothatitaccuratelydescribesthesystemthatisbeing

modeled. The typeofanalysisdesireddictateswhich factorsofthecomputer'soperation

need to be incorporatedintothe modelingframework. A factorthat isalmostalways

included,especiallyin the study of computer performance,isthe representationof the
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workloadhandled by the computer system being analyzed. The workload is an essential

part of the performance evaluation of any computer system, because how well a com-

puter performsis directlyrelated to the type of workloadit is handling.

First, we present the beginning stages in the development of a model to study the

workload effects on performancefor a specific computer architecture and application.

The type of system being addressed is a highly reliable unibus2 multiprocessorthat is

used in rea!-timecontrol. Dealing exclusivelywith real-timesystems in the evaluation of

multiproeessor performanceis an approach that has not been largely addressed in the

literature. Usually, a general purposemultiproeessoris discussed,as in [1-3]. This type

of approach is difficult because of the largely varied workload general purpose systems

handle. Trying to represent a system of this type with its workload becomesunreason-

ably complex, if one wants to properlydescribethe workloadeffects on performance. It

appears that a number of interesting results can be obtained if one only considers the

structure of a real-time system and its workload.

The detailed analysis of this type of system is desired because of the increasing

number of critical situations it is used for, e.g., control of aircraft, spacecraft, nuclear

reactors, etc., where the failure of the controllingcomnuterwould result in catastrophic

losses. A failure could be the result of a physical malfunction or the result of the system

not reacting quickly enough as required[4].

Many authors have presented designs for synthetic workloads [5-8]. They have

usually reliedon heuristic methods that seemto providean adequate workloadfor a gen-

eral class of computing systems. Recently, Ferrari [9] has made the point that a more

systematic method is necessary, because of the fundamental correlation between work-

2Azmentionedearlier,thiscanbe redundantbuses.
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load modelingand any performanceevaluation. Developingsuch a method is morecom-

plicated than it might first appear. One first needs to define what the workload model

should cover in its representation,and what standard should be used to determineif a

workload model is a "good"model.

We view a real-timecomputer system as the combination of two closely dependent

components: the controlled process and the controlling computer [4]. Because of this

close dependency, we feel that the developmentof a synthetic workload for this type of

system should not only rely on the actual workload being modeled,but it should also

depend on the type of system handling the workload. It is this basic association that

sets our work apart from those of others. Having a specializedsynthetic workload of

this type provides us with a means for producingmoreuseful results relating to the per-

formanceevaluation of real-timecomputingsystems.

Typically, the workloadof a real-timesystem is a fixed group of tasks that have to

be performed at certain intervals, repeatedly. There is usually a group of short, fre-

quently initiated tasks that monitor internal and external conditions and continually

compensate for their change. There are also tasks that are initiated less frequently that

requiremore computation time. The relative frequenciesof the initiation of tasks, and

the numberof tasks that need to be completed in a certain time frame lead to strict per-

formancecriteria.

It would be desirableto be able to determine if a computer system with the archi-

tecture mentioned above could handle a given workload and set of performancecriteria.

If it can, one would like to know how this might be best accomplished. And finally, it

would be useful if this optimal performancecould be measured. The model presented

here will hopefully aid in solving some of these problems.



Vital factors can be determined directly from the model, such as the amount of

processor idle time, the degree of contention for the single bus, and the tasks that have

the most significant effect on performance. These details will be discussed in a later sub-

section. The model can also be used as a tool for determining the optimal workload dis-

tribution to reach a certain level of performance.

2.2. System Architecture and Operation

As mentioned earlier, the hardware system addressed here is a highly reliable

unibus multiprocessor. The generalstructure of such a system is shown in Figure 1. It

consists of four major componentsprocessing clusters, input/output links, a time-shared

system bus, and system memory. A descriptionof each of these will be discussedas well

as their assumed interdependencies.

A processing cluster is an entity that is capable of operating on one task at a time.

It consists of one or morepairsof a processingunit and its local memory. The degree of

redundancy is considered immaterialto the performanceof the cluster for a given task.

Although, the redundancy does have a significant impact on the reliability and confi-

guration aspects of system operation. What is important is that regardlessof how many

pairs there are in a cluster, they all work together on a single task. For example, a clus-

ter may represent a triple modular redundant (TMR) system of three processingunits

and their local memories. It is also assumedthat all the clusters in the system are of the

same type, i.e., they all contain the same number of processor-memorypairs.

An input/output link is a componentthat enables data to be transmitted to or from

an external device. These allow the system to readdata fromsensors and transmit data

to actuators and displays. These links are also the channels used for human interface

through terminals or other similar devices.
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The tirac-sharedsystem bus interconnectsall the processingclusters,I/O links, and

system memory. It is the medium for exchanging all data and control signals. Again,

this bus may be redundant for reliability reasons, but only one cluster transmits and

receivesdata over all copiesof the bus at a time. Therefore,the redundant system bus

logically acts as a unibus. A cluster communicatingover the bus is said to control the

bus.

Finally, there exists a single system meraorllthat is addressable over the system

bus. This memory usually consists of a collection of dynamic RAMs. The system

memory may be redundant with the restrictionthat only one system memory location

may be addressedat a time.

The basic operatingprinciplesof this multiprocessorsystem can be explained as fol-

lows. All tasks to be executed by the system are stored in system memory. These tasks

can be divided into n job classes, where a job class consistsof tasks that are requiredto

repeatedly execute at the same relativefrequency. Morespecifically, tasks of job class i

are executed every ri seconds, where 1 is the frequencyof initiation of a task of job
ri

class i. There m_y be morethan one job class having the same relativefrequency for its

tasks. The set of job classes is a partition of the set of system tasks, wherea task is in

one and only one job class.

Eachjob class is given a priority. This priorityis used to determinewhich process-

ing cluster may use the system bus when there is a contention among clusters for bus

control. A cluster about to workon or currentlyworkingon a task fromjob class i has

priority over another cluster to control the system bus, if the other cluster is about to

work on or is currently working onatask fromjob class j, where 1 _ i < j _ n.

Priorityof clusters workingon tasks of the samejob class is determinedby a first come
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first served (FCFS) policy. Task queues are kept for each job class and these reside in

system memory also.

An idle cluster wishing to process a task from job class i must first gain control of

the system bus. It does this by waiting for inactivity on the bus and proceeds to partici-

pate in a pollin 9 ,equence. A polling sequence is a decision process to determine which

cluster has the highest priority. This is conveniently done by requiring each of the clus-

ters to transmit their priority number over the system bus and having a voting mechan-

ism determine which cluster has the highest priority. As a resul_ of the polling sequence,

the cluster with the highest priority is given control of the bus.

At this time the cluster reads the task queue for job class i from system memory

and determines the next task to be executed. It then reads in the task and all data

necessary to process that task. This data can be obtained from I/O link reads or more

system memory reads. After obtaining all the information necessary to internally exe-

cute the task, the cluster updates the job queue in system memory and releases the bus.

There are other mechanisms such as counters, queues, and interrupt timers to aid a clus-

ter in determining which job class to request. When a cluster completes a task, it will

again request bus control and transmit its results to the relevant addresses, determine

which job class to work on next, and proceed as before.

At any particular instant, all the clusters could be processing tasks simultaneously

resulting in peak performance. Performance dwindles when a cluster becomes idle wait-

ing for control of the system bus. There is also a penalty in performance, or system

failure, if all the clusters are not able to keep up with the required frequency of task exe-

cution for each job class.

8



A reasonable question to address is how are the job classes formed? More specifi-

cally, given a system workload, what is the best number of job classes and the distribu-

tion of the tasks among these classes! For a general purpose computing system's _7ork-

load, this is difficult to determine [8]. Some of the main problems in representing the

workload in a general purpose multiprocessor system model are (1) showing the inter-

dependencies among tasks in the workload, (2) the fact that the workload may not be

stationary, i.e., tasks of one type might occur at different: rates at different times, (3) the

unlimited number of tasks possible, and (4) the contention for physical components

needed to execute tasks operating concurrently. Providing a model that is able to

represent all these features would be extremely difficult, if not impossible. Fortunately,

when one only considers real-time applications on a unibus system these problems

become relatively easier to address. The workload of a real-time system is usually a

fixed set of tasks that have to be executed in a prescribed order at regular intervals.

This makes determining the physical and logical interdependencies more tractable. It

also implies a stationarity among the relative frequencies of different tasks. Therefore,

natural job classes can be formed and parameterized. However, this still is not an easy

task.

2.3. Stochastic Petrl Net Model

In the development of the model, it was first necessary to represent the overall

operation of the system at some level of abstraction that would be amenableto the type

of performance analysis desired. This representation is needed to depict the various

states a proce3singcluster might be in. The features that have a significant effect on

performance are system bus contention, transmission delays, and possible idle periodsof

a processingcluster. By modeling at the system level, where the components of concern
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are the tasks, clusters, and system bus, we are able to describe the stages a processing

cluster will go through and how its actions affect the operation of the other clusters.

A useful tool for showing synchronization among system components is a Stocha, tic

Petri Net (SPN) [10-11]. Figure 2 is an example of a modified stochastic Petri net which

describes the synchronous actions of the system referred to in this report. This is a modi-

fied SPN because of the presence of the three function blocks F1, F2, and F3.

A SPN is a structure consisting of place,, tran,ition,, and directed arc, connecting

transitions and places. A place is usually represented in a net drawing as a circle, while

transitions are shown with bars. Directed arcs connect these places and transitions in a

way that there is no arc going directly from a place to another place, or from a transi-

tion to a transition. Tokens or dot markings in a place represent collectively the state of

the SPN.

A transition will fire when it becomes enabled. A transition is enabled when there

exists at least one token in each input place to the transition. The process of firing a

transition results in one token being removed from each place for each arc entering the

transition, and a single token placed in all of the places that have input arcs emanating

from that transition. A transition may fire instantaneously, such transitions are

represented by solid bars (T1 - T9 in Fig. 2), or have an ezponentially di, tributed random

duration, such transitions are called timed tran,ition8 and are represented by hollow

vertical bars (T10 - T21). When an instantaneous transition is enabled, tokens are

immediately removed from input places and sent to output places. \Vhen a timed tran-

sitions is enabled, there is an exponentially distributed delay before tokens are removed

from input places and immediately sent to output places.
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The function blocks in Figure 2 are not defined components of a true SPN. They

are used here to simplify the appearance of the figure. The functions represented by

each block have been expressed as SPNs themselves. They act on the input arcs to the

block and produce tokens at the output arcs. The functions they represent are trivial in

nature, but the SPNs are complex and cloud their simplicity. For example, F3 has been

expressed using 13 places, 11 transitions, and 46 directed arcs.

Figure 2 is an SPN for a three cluster, unibus multiprocessor. [low a single cluster

is incorporated in this model will now be explained. The extension from one cluster, to

three, and more will be simple to envision. There are seven places (P1, P2, PT, P8, P13,

P16, and P21), three instantaneous transitions (T1, T4, and T5), and four timed transi-

tions (T10, Tll, T16, and T21) necessary to describe the operations of a single cluster.

What they represent is described in Table 1 and Table 2.

The F1 (Poll) function block is activated whenever there is a token present in

places 8, 10, or 12, i.e., when there is a poll request. It performs the action of removing

these tokens if they are present and deciding which of the requesting clusters should

obtain control of the bus. On output one token will be placed in either place 13, 14, or

15, depending on which cluster has gained control of the bus. There will also be tokens

placed in places 7, 9, and 11, if that cluster has lost the poll sequence. For example, sup-

pose cluster 1 and cluster 2 both initiate a poll sequence and cluster 1 is to succeed in

the poll. Initially, there would be a token in places 8 and 10. This indicates that cluster

1 (place 8) and cluster 2 (place 10) wish to initiate a poll sequence. The Poll function

would remove these tokens, and after a delay representing the time it takes to perform a

poll, will place a token in place 13 (cluster 1 has succeeded) and one in place 9 (cluster 2

has lost the poll).

12



Place A tokeninthis placemeansthat ....

P1 a systembusrequesthas beenmadeby the cluster.

P2 the systembusis freeasseenby the cluster.

P7 the clusterhas losta pollsequence.

P8 the clusteris initiatinga pollsequence.

P13 the cluster has succeededin a poll sequenceand has been granted
buscontrol.

P16 the clusterhas completedits bustransactionsand is to becomeidle.

P21 the clusteris readyto beginprocessinga task.

Table 1. PlaceDescriptions

13



Transition The ru-ingof this transition represents ...

T1 the cluster determining that the bus is busy.

T4 the cluster acknowledges that it has lost a poll sequence
and must wait to make another request for the system bus.

T5 the cluster initiating a poll sequence.

T10 the cluster transmitting on the system bus.

T11 the cluster transmitting on the system bus.

TI0 the cluster remaining in an idle state.

T21 the cluster internally executing a task.

Table 2. Transition Descriptions



Functions F2 (Bus Release)and F3 (Disable)act to indicate that the bus has

becomefreeor is busy.FunctionF2 acts by keepingtrackof whichclustersarein a poll

sequence,thus transmittingon the systembus, or whichare communicatingoverthe

systembus. Whenall activityis completedby all the relevantclusters,the F2 function

will indicatethat the bus is free by placinga token in places2, 4, and O. FunctionF3

acts to disableotherclustersfrominitiatinga pollsequenceif the bus is currentlybusy.

Therefore,whena poll requestis madethe F3 functionwilldeterminewhichof the clus-

tersshouldbe disabled.

Figure2 completelydescribesthe systemwe are interestedin. Oneis ableto follow

the actionsof a singleprocessingclusterand observethe effectsof these actionson the

restof the system. The modelservesthe purposeof enablingus to see whichactionsof

a computingclusterhave the greatesteffecton systemperformance.Forexample,by

supplyingtransitionratesforthe timedtransitions,onecoulddeterminehowoftena bus

requestis made. Combiningthiswith informationonthe durationof a typical transmis-

sion willgiveus an ideaof howoftenthe bus is busy. With this result,it can be intui-

tively stated that the higherthe busrequestfrequencyis, the greaterthe possibilityof

buscontention.

It can be observedthat this model,wereit completelyexpressedwith valid SPN

components,wouldbecumbersomeandconfusing.Malloy[10]has shownthat SPNsare

isomorphicto continuousparameterMarkovchains. An SPN can be convertedto a

Markovchain and completelyanalyzed. Onedrawbackof this methodis that the state

spaceforsuch a Markovchain is large. It is unmanageablylargeforthe exampleof Fig-

ure 2 (keep in mindthat the SPN for a functionblock is largerthan the restof the

modelshown). Therefore,it is obviousthat usingthis modeldirectlyas a tool forper-
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formance evaluation of the system of interest is inappropriate. A simpler model has to

be derived that expresses the same relationships. Such a model is introduced in the next

section.

2.4. Queueing Model Deserlptlon

The model presentedin this section is designedto representthe states of a unibus

multiprocessorsystem. The state of the systemis definedby a combinationof the states

of all the processingclusters. With the aid of the modeloutlinedin the previoussection,

the states that were determined to be relevant to system performanceare when a pro-

cessing cluster is (1) competing in a poll sequence,(2) communicatingon the system bus,

(3) processing a task from job class i, or (4) idle, i.e., not processing a task. The rela-

tionship between these states of a processingcluster and the relationship between clus-

ters can be inferredfrom Figure2.

These relationships are incorporated into the dosed queueing network shown in

Figure 3. This model has a numberof advantages overthe SPN model,besidesthe obvi-

ous of being simpler to understand. First, it reduces all the actions of bus contention

and the polling sequence into a single non-preemptive priority queue. A non-preemptive

priority queue is one whereeach of the arrivingcustomershas an associatedpriority. A

customer enteringthe queue will move ahead of all the customers in the queue that have

lowerpriorities,and behind those of equal or higher priority. In this manner,customers

of the highest priorityin the queue are servedfirst on a FCFS basis. The second advan-

tage is that the separate job classes can be explicitly parameterizedin this model,

whereas in the SPN modelthey wereall grouped together. Third _nd most importantly,

this model can be easily solvedfor a given set of parameters.
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Before describing the details of this queueing model, it should first be noted that

the parameters and node representationsof this model_ from those of conventional

queueing models. Typically, the nodes of a queueing model represent serversof some

type, e.g., processors, workers, etc. The _sociated parameter for each node usually

describesthe exponential service rate for the server. The tokens or markings moving

about the model representcustomers that desireservice, e.g., programs,jobs, etc. The

actions of a closedqueueing model can be describedas a token arrivingat a node, wait-

ing, if necessary, a certain length of time for service, being served for a len_h of time,

and moving on to the next node. The model describedhere reverses the conventional

meanings of node and token. In this model,a node representsa customer that needs ser-

vice, and the associatedexponential servicerate describeshow long it takes to complete

that service. The tokens on the other hand representservers,where all the serversare

identical. Therefore, this model represents serversmoving from customer to customer

and pedorming the servicerequested by that customer. This unorthodox convention is

used because (1) it simplifies the model, and (2) it explicitly shows the state the system

is in by showing what state each processingcluster is in.

It is the goal to determine the steady state probabilitiesfor the distributionof clus-

ters among the different states, s Since it is safe to assume that the system will reach

steady state before a cluster fails, the number of clusters remains constant in the

analysis. Typical values for the mean time between failures (MTBF) are in the order of

10s-104 hours. Whereas,steady state can be reachedin a matter of minutes at most.

Once steady state is reached, a cluster may fail. At that point we have a system

with one less cluster, and it is reasonable to assume that this system will reach stcady

aThis will be shown in Section 2.5.
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state before another failure occurs. The performance of this degraded system will be less

than that of the previous system. To obtain the overall performance of the system

operating over a certain length of time, the performance contributions of each of the

configurations are combined, weighted by their relative time of operation. Therefore, in

the following analysis, we will assume that no cluster fails and that the number of clus-

ters remains constant.

In this model m equals the total number of homogeneous clusters in the system.

Since the number of tokens in this closed queueing model remains constant, it is justifi-

able to have each token represent a cluster. Therefore, there are exactly m tokens

present in the system at all times. The nodes represent the activities that are performed

by a cluster, e.g., a cluster is in the idle state if it is idle.

There are n + 2 nodes in this model. Again, n is the number of different job

classes in the workload. As stated before, tasks that belong to the same job class are

assumed to each have the same distribution of internal processing time. It is assumed

that this processing time is an exponentially distributed random variable. The number

of tasks in a job class has to be greater than or equal to one. Each of these job classes is

given a priority level, where all t_ks of the same job class have the same priority and a

task from class i has priority over a task of class j" when 1 < i < ] <_ n.

Each of the nodes will be described below.

NODE 1 : This node represents the transmission activity over the system bus. It con-

sists of a non-preemptive priority queue and a transmission server. A token

at this node represents a cluster that is either waiting to transmit on the sys-

tem bus or currently transmitting. The parameter Ps describes the the

transmission rate of a cluster, i.e., __1 is the average transmission duration.
Ps
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A non-preemptivepriorityqueueis used to show that a cluster that has just

completeda task fromclass i is given priorityto transmit overa clusterthat

has completeda task of class j, where again 1 _< i < j _< n. Clusters

completingtasks of the sameclass areable to transmit on a FCFS basis.

NODE 2 : A token at this node representsa clusterthat is idle, i.e., performingno

usefulcomputations. It i3 a multiservernodewith m servers. A nodeof this

type is used to indicatethat all the clusters may be served at this nodewith

no queueforming. This is equivalentto saying that all the clusters may be

idle at the same time. The sojourn time in this idle state for a cluster is

assumedto be exponentiallydistributedwith rate Pl. The rate at whichclus-

ters leave this node is k Pl, where k is the numberof tokens beingserved by

the node.

NODES 3 through n+2 : These n nodes representthe differentjob classes. Node

i+2 representsa processing activity on a task of class i. Again, as with

node 2, these are multiservernodes with m servers.Thus, no queue formsat

any of the nodes. This type of node is used to indicate that all the clusters

could be working on tasks from the same job class. The parameter Pi is the

rate describingthe processingduration of a task of class i. Typically, Pi --_

Pi when i < j. The rate at which clusters leave the node i+2 is kpi,

wherek is the numberof tokens beingservedby the particular node.

The final parameters in the model that need explanation are the branch probabili-

ties. When a cluster completesa transmission,it either drops into the idle state or con-

tinues processing. The probabilitythat the next state is the idle state is PI and simi-

larly, the probability that the next state is a processing state is Pp. Obviously,
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/'I +Pp-----1. \Vhen a processor is to enter a processing state, there is the probability Pi

fl

of it being the processing of a job of class i, where _ Pi _ 1. Typically, Pi > Pj
i=l

when i < ].

2.5. Solutions to the Queuelng Model

The common approach to solving for the steady state probabilities of a queueing

model is to convert the model to that of a continuous parameter Markov chain [12]. This

approach will be used to solve the queueing model presented here. For the construction

of a Markov chain, we make the following definitions.

Definition 1 : A clu+tcr 8tat_ is a pair (ci,n i ), v:herc c_ E {1,2,...,m } is a number label-

ing a particular processing cluster, and "i E {1,2,...,n-l-2} is the number of

the node where the token representing the cluster is located. There are

m'(n+2) cluster states.

Definition 2 : A _yst¢m +tat¢ is an m-tuple( _,,_2_...,_m ) E S1XS2X "'" XS,_

where Si is the set of all cluster states whose first component is ci. There

are (, +2) m system states.

An example of a system state for a system with three clusters and three job classes

is ((1,1),(2,3),(3,1)). This represents the configuration when clusters 1 and 3 are waiting

to communicate on the system bus or are currently communicating, and cluster 2 is pro-

cessing a task from job class 1.

From an analysis standpoint, a system state contaln_ more information than is

necessary. Wc are only concerned with how many clusters there are at a particular

node. We do not need to kno_ which they are, because they all require the same

amount of time to process the task at a particular node. It is the number of clusters
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that determineshow fast tasks are completedor delayed at a node. This motivates the

followingdefinition.

Definition 3 : A reduced system _tate is the n+2-tuple (al,a2, . . . j an.2), where ai E

{0,1,...,m} is the total number of tokens representingclusters at node i.

There are m'(n+2) reducedsystemstates.

We can define a formalmapping, q_,from a system state to a reducedsystem state

as follows: q_(81,,2,... ,,m} ----(al,a2,...,an.2}, where ai ._. number of ,i's

(j-----1,...,m)whose second component is i. Referringto the example above, we note that

the system state ((1,1),(2,3),(3,1))is representedby the reduced system state (2,0,1,0,0).

It should also be noted that the system states ((1,1),(2,3),(3,1)),((1,1),(2,1),(3,3)),and

((1,3),(2,1),(3,1))are all representedby the same reducedsystem state.

We use the reduced system states as the states of the Markov chain. The transi-

tions between these states is defined by the relevant servicerates of each of the nodes in

the closed queueing network. It has been stated by Kleinrock [13]that a closed queueing

model of this type with K customers and N nodes has J ---- {N N+ K1- 1} states in its

Markov chain representation. For our model,we have ra customers (clusters) and n +2

nodes. From this Markov chain, a J X J transition rate matrix,A, can be formed and

used to derive the steady state probabilitiesfor each state in the Markov chain. This

involves solving the matrix equation A.x--0, where x (zl,z2, ., z_ }T_--- .. and zi

representsthe steady state probabilityof the system being in state i. A nontrivial solu-

tion results when the constraint _ zi = 1 is considered. The existenceof such a solu-
i=1

tion is based on the fact that we have constructed a finite state, irreducible, and
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recurrentMarkovchain.4 Since it is possible for a token in the queueingmodel to move

from one node to any other node, either directly or through some intermediate nodes,

and there is a non-zeroprobability that a token leaving a node will return to that node,

the Markovchain is indeedirreducibleand recurrent.

Once the steady state probabilities are determined,two useful results concerning

the multiprocessorsystem can be quickly obtained. One is the probabilitythat a cluster

is idle. This is simply the sum of the probabilities for each of the Markov chain states

that represent having one or moreclustersat node 2. The other result is the amount of

system bus contention. When there is morethan one clusterat node 1, there is a cluster

waiting to obtain bus control. Again, all that has to be done is to sum the probabilities

for each of the M_rkovchain states that representhaving more than one cluster at node

1. Recall that node 1 includes both the priority queue and the transmission server.

These two results are necessaryto producea performancemeasure of any type.

A third result can also be easily obtained. It would be interesting to know how

long a cluster would have to wait, on the average, if there is contention for the system

bus. It has been shown by a number of authors that the averagequeueingtime for cus-

tomers of a given priority class in a non-preemptivepriority queue can be determined

[14-16]. The averagequeueing time for a customerof prior'ty class i is

k

J E
2 i=1Wi----

[1-i=,/_ i ] [ 1-i___,_- ]

where

k = the numberof priority classes.
mj" _ the probability that an arriving customer is of class j.

4A unique steady state solution exists for this type of Markov chain.
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Pi _ the mean service rate of a customer of class j.
cy _ the secondmomentof theservice-timedistributionforcustomersof

classi.
k

The meanqueueingtimeof all customersis We -= _ cryIVy.
y--1

For the model described here, all clusters requesting service at node 1 require the

same amount of servicetime. Therefore, for this example we have k _- n, Pi =- Ps for

2 for all i. \Ve then arrive at the averagequeueing time for a cluster
all i, and ci -- It_

about to work on a task fromjob class i, IV,..

W,.----- 1

[PS - _' ai ] [Ps -/_ _i ]

It should be noted that Wi is the average queueing time only. The total time a custo-

mer spends at node 1 is the sum of the queueingtime andthe servicetime.

The only difficult part of deriving Wi is determining the values of each of the a i 's.

To do this, let p(s) equal the steady state probability of being in state s of the Markov

chain. Let Sii be the set of states of the Markov chain representing j clusters at node

i. The rest of the clusters, if any, may be at any of the remaining nodes. Then,

ri m
ai -- . where ri = lti E E J "P(S).

ri i=1 ,_s,+_,,
j _1

2.0. Description of Experimental System: FTMP

FTMP is a highly reliable multiprocessor installed in the AIRLAB at NASA Lang-

ley Research Center. This machine is intended to be used for real-time control of corn-

mercial aircraft of the next decade. Because of the disastrous effects that could occur if

this computer should fail while in use, NASA has determined that the probability that
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this system could fail should be less than 10-° for a 10 hour flight. This obviouslycalls

for extremelyrigidperformancecriteria.

The hardware structure of FTMP consists of ten identical Line Replaceable Units

(LRU's)[17]. Each LRU includesa processor modulewhich contains local cache memory,

a shared 16K wordmemory, a 1553I/O port, two bus guardian units, a clock generator,

and a power subsystem. Any three processorscan be grouped together into a triad. The

processor remaining after forming three triads is reservedas a spare processor. Ten

memory modules are also formed into three triads and a spare. Communications

between processorsand the shared memory are accomplished through serial system

buses: that is, a data transmit bus(T-bus), a data receivebus(R-bus), and a polling bus

(P-bus) for resolving bus contention. The system buses are also arranged as triads by

activating three out of five. Therefore,from the programmer's viewpoint, there is only

one system bus.

System configurationsare controlledby bus guardianswhich assign the connections

between processorsand the P-bus or T-bus, and between shared memory and the R-bus.

Two bus guardians at each LRU form a dyad such that any transmission to system

buses will be enabled only when both guardians agree. The bus guardians are also used

as a voter for any processoror memorytriad. Since three processors in one triad are

operating in tight synchrony, their respective bus guardians should receivethree identi-

cal data under a fault-free condition. When there is a disagreement, an error is con-

sidered to have occurred,but masked, and the task executionwill continue. Meanwhile,

the disagreement will be recordedat an errorlatch for later identification of the hulty

module or bus. From the user's or software's standpoint, the FTMP is regardedas a

three processorsystem and has a shared 48K system memoryamong the three as shown
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in Figure 4. The interested reader is referred to [17] for a complete architectural descrip-

tion of FTMP. What has been stated here is sufficient for the present discussion.

The software of FTMP is divided into five groups. They are the Executive

Software, Facilities Software, Acceptance Test/Diagnostic Software, Applications

Software, and Support Software [18]. Most of the tasks in each of these software groups

have to be dispatched at regular intervals to handle repetitive applications such as flight

control, configuration control, fault detection, recovery, as well as system displays. To

do this, FTMP has a dispatch algorithm that initiates tasks at their required frequencies.

Taking into account the type of application, the FTMP developers determined that

tasks had to be executed at three different frequencies, and the type of action performed

by the task determined which rate o_roupthe task belonged in. They termed the three

rate groups R1, R3, and R4. Their respective nominal frequencies are 3.125, 12.5, and 25

tIz. Tasks required to execute at a particular frequency are given priority to access sys-

tem components over tasks that are initiated at lower frequencies. This implies that

tasks in the R4 rate group have priority for bus access over tasks from rate group R3,

etc.

Fault detection, identification, and system reconfiguration are handled by an execu-

tive program called the System Configuration Controller (SCC) which is dispatched at

the slowest rate R1. This is done so the execution of the SCC will have a minimal effect

on the system workload, and the errors generated by a single fault will have an

appropriate system response. For experimental purposes, there are two application tasks

installed on the FTMP: auto-pilot and display programs.

The associated fault injection system is controlled by a host VAX-11/750 computer.

The injection extenders can be inserted into any chips at LRU3 and their respective
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Figure 4. A block diagram of FTMP (from [15]).
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socket holes such that the electrical connection between pins and the circuit board

becomescontrollable. Thus, three types of faulty signals, i.e., inverted signal, 8tuck-at-I,

and _tuck-at-O,can be injected at the pin level. Beforeany injection, the host computer

will signal the FTMP to activate LRU3for the fault injection. The detection, identifica-

tion and reconfiguration intervals are measured by reading a real-time clock and the

responses from the FTMP. This informationis then transferredfrom the FTMP to the

VAX-11/750 via a 1553 I/O port and a communicationinterface. Fault injection opera-

tions are processed by the FIS (Fault Injection System) on the VAX-11/750. The FIS

consists of a command interpreter,an injection handler, and an FTMP-VAX interface

program.

Recently, we have conducted some experimentson FTMP to measuresome factors

relating to bus contention, and the polling sequence. The results are summarized in

Table 3. These results pertain to the fault free system with three operating triads. As

can be seen, with the software presently on the system, there is a large amount of bus

contention. Although a triad usually succeeds in its first poll sequence, it must wait

47% of the time for the bus to becomefree. However,it was noticed in performingthe

measurements that the bus was usually busy for only a very short period. The busy

periodwas of a significant duration in only a few instances. It is also interesting to note

that the duration of a bus transaction is one quarter the time between bus requests.

This is probablywhy the bus is busy so often when a bus request is made.

2.7. Queuelng Model Representation of FTMP

It is obvious that the architectureand software structure of FTMP fit nicely into

our queueing model. One can representthe three triads as clustem, and each of the rate

groups as a job class. Job class I is rate group R4, because of the relative prioritiesof
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P(Bus is busy when a bus request is made) _ 0.47

P(Bus is free when a bus request is made) _ 0.53

P(Suceeed in first poll sequence) _ 0.92

P(Lose f'w_tpoll sequence) -- 0.08

P(Succeed in second poll sequence) _ 1.00

Ave. idle time waiting for free bus, if lost _ 32.2 ps
poll _quence

Ave. idle time waiting for free bus, if busy _ 21.0 ps
when request was made

Ave. duration of bus transaction -- 36.4 ps

Ave. time between bus requests -- 140.9 p8

Table 3. Experimental Measurements
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the rate groupsand job classes. Likewise,job class 2 is R3, and job class 3 is R1. There

is some dependence when task from a rate group are executed based on the state of

tasks of a higher priority rate group. However,these can be handled by the model by

increasingthe number of job classes. Forthe purpose of illustration,these dependencies

are assumedto be negligible. In the queueingmodel representationof FTMP we, there-

fore, have five nodesand three tokens representingcluster_,i.e., n=3 and m=3. By the

formula mentioned earlier, the Markov chain representationof this specific model has

J = (_} = 35 states. These states and their respective reduced system states are

described in Table 4.

To solve the Markov chain, the values for the parameters of the queueing model

have to be determined. Sample values are outlined in Table 5. The value for Ps was

obtained from the experimental data. Pr was arrived at from the documentation on

FTMP[18]. The other parameters were arrived at through reasonable assumptions, or

realistic relations among the service rates. The computed steady state probabilities for

the _tates of the Markov chain using these parameter values is shown in column 3 of

Table 4. Columns 4, 5, and 6 of Table 4 are the steady state probabilities when the

parameter Ps is varied, and the rest of the parameter_remain constant.

Using the informationsupplied by Table 4, some simple results can be stated. The

probability that there is an idle cluster is the sum of the steady state probabilities for

the Markov states where there are one or moreclusters at node 2. These are states 2, 6,

7, 8, 9, and 18 thru 25. The idle probabilitiesfor the differentvalues of Ps are shown in

Table 6. These numbersare extremely low, implying that rarely is a triad idle. The

probability that there is bus contention is the sum of the steady state probabilities of

states 1 thru 5 (states representingmore than one cluster at node 1). These results are
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Markov States Computed Steady State Prob.

State Reduced System State Ps _0.0275 Ps _--0.00275 Ps _---0.0138 Ps -----0.055

1 ( 3, 0, 0, 0, 0 ) 0.022 0.589 0.096 0.004
2 ( 2, 1, 0, 0, 0 ) 0 0.002 0.001 0
3 ( 2, 0, 1, 0, 0 ) 0.039 0.106 0.087 0.013
4 ( 2, 0, 0, 1, 0 ) 0.039 0.106 0.087 0.013
5 ( 2, 0, 0, 0, 1 ) 0.037 0.099 0.081 0.013
o (1,2, o,o,o) o o o o
7 (I,I,I,O,0 ) 0.001 0 0.001 0.001
8 ( 1,1,0,1,0 ) 0.001 0 0.001 0.001
9 ( 1, 1, O,O, I ) 0.001 0 0.001 0.001
10 ( 1, 0, 2, 0, 0 ) 0.036 0.010 0.039 0.024
II ( I, O, I, I, 0 ) 0.071 0.019 0.079 0.048
12 ( I, O, I, O, 1 ) 0.067 0.018 0.074 0.045
13 ( I, O, O,2, 0 ) 0.030 0.010 0.039 0.024
14 ( 1, 0, 0, 1, 1 ) 0.0{}8 0.018 0.073 0.045
15 ( 1, O, O,O,2 ) 0.031 0.008 0.034 0.021

16 (0,3,0,0,0) o o o o
17 (0,2,1,0,0) 0 0 0 0
18 (0,2,0,1,0) 0 0 0 0
19 (0,2,0,0,1) 0 0 0 0
20 ( O, 1, 2, O,0 ) 0.001 0 0.001 0.001
21 ( o, 1, 1,1,0 ) 0.002 0 0.001 0.oo3
22 ( O, I, I, O, I ) 0.002 0 0.001 0.003
23 ( 0, 1, 0, 2, 0 ) 0.001 0 0.001 0.001
24 ( 0, 1, 0, 1, 1 ) 0.002 0 0.001 0.003
25 ( O, 1, O,O,2 ) 0.001 0 0.001 0.001

26 ( 0, 0, 3, 0, 0 ) 0.021 0.001 0.012 0.029
27 ( 0, 0, 2, 1, 0 ) 0.064 0.002 0.035 0.087
28 ( 0, 0, 2, 0, 1 ) 0.0O0 0.002 0.033 0.081
29 ( O,O, I, 2, 0 ) 0.064 0.002 0.035 0.087
3o ( o,o, 1,1,1 ) 0.120 0.oo3 0.o8o 0.163
31 ( 0, 0, 1, 0, 2 ) 0.056 0.002 0.031 0.076

32 ( O, O, O, 3, 0 ) 0.021 0.001 0.012 0.029
33 ( 0, 0, 0, 2, 1 ) 0.0O0 0.002 0.033 0.081
34 ( 0, 0, 0, 1, 2 ) 0.056 0.002 0.031 0.076

35 ( o,o,o,o,3 ) 0.018 0 0.010 0.024

Table 4. Markov State Descriptions and Steady State Probabilities
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PS __ 1 -- 0.0275 Pp ==0.95
36.35

pi ----5.p= ----0.0458 /)! ----0.05

Pl 1 -----9.17XlO-S P1 ----0.6

p_ 1 ----4.58X 10-s P2 -----0.3
= -_"_s

Fs -- 1 ----1.63X 10-s Ps _ 0.1
16.87 "/is

Table 5. Parameter Values
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Ps Idle Prob. Cont. Prob.

0.00275 0.002 0.902

0.0138 0.010 0.352

0.0275 0.012 0.139

0.055 0.015 0.043

Table 6. Idle Processors and Bus Contention Probabilities
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also shown in Table 6. Figure 5 shows the effect of changing the service rate at node 1

on bus contention. The probability of bus contention increases dramatically as the ser-

vice rate approaches zero, as expected. Figures 6 - 8 show the effects of varying Pl, Pl,

and Pl, respectively. One could derive from these graphs the sensitivity to a change in

performance caused by a change in a service rate or branch probability.

There are numerous other conclusions that could be drawn from the results of this

example. The sensitivities of varying other parameters, average queueing times, and

degraded system performance are just a few. It can be seen that this model is useful in

analyzing many of the aspects that are vital to any performance evaluation. It is impor-

tant to note that all the parameters of the queueing model are ones that can be meas-

ured.

3. MEASUREMENT OF FAULT LATENCY

3.1. Introduction

A hardware fault is defined as an incorrect state caused by the physical change in a

component, whereas an error is defined to be the erroneous information/data resulting

from the manifestation of a fault. Even after a hardware fault occurs in a computer sys-

tem, the system will remain error-freeuntil the fault manifests itself. Before its manifes-

tation, the fault is latent and is not harmful to any system operations. Thus, there are

two time intervals of interest between fault occurrence and error detection: fault latency

and error latency (see [21] for a detailed description of these). Obviously, error latency

depends on the detection mechanisms s used. Fault latency is dependent on the location

and the type of the fault, and the degree of usage of the faulty unit. In other words,

%¢hiehwe termed the function-level detection mechanisms in [21].
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fault latency is closely related to the physical property of a fault, whereas error latency

represents the efficiency of the detection mechanisms used.

In a reliable computer system, the detection and isolation of faults and errors, and

the subsequent reconfiguration are provided to tolerate faults and errors. These steps

must be executed correctly by fault-free subsystems. In the face of multiple faults, the

fault-tolerance capability is reduced and the coverage of failure is incomplete. It has

been shown that an incomplete coverage is the major threat to a highly reliable system

[22-24]. Thus, the accumulation of latent faults and the near-coincident occurrence of

faults should be considered in the modeling and verification of a reliable system. How-

ever, the conventional modeling of a reliable system usually assumes that the system is

recovered from an extant fault if no new fault occurs during the recovery period; other-

wise, a coverage failure results. This is true only when there is no fault latency or a

negligible fault latency during which no new fault occurs. That is, the conventional

works have ignored the possibility of the accumulation of latent faults. Obviously, the

conventional approach becomes invalid if fault latency has the same order of magnitude

as the recovery period. Due to the reasons discussed above, it is essential to accurately

evaluate both fault and error latencies.

In addition to the analysis of the coverage failure, the knowledge of fault latency is

important to the study of transient faults. Clearly, a transient fault manifests itself only

when its active duration is greater than fault latency. If fault latency is long, it is possi-

ble that most transient faults will disappear before they harm the system. In such a case,

the transient faults captured by some detection mechanisms cannot represent the true

characteristics of all transient faults.
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In the past, several researchers conducted experiments and simulations to investi-

gate faults' manifestations and subsequent error detections by injecting hardware faults

[25-34]. Results were observed through the detection mechanisms following the fault

injections. They measured the probability of detection and the distribution of detection

times which are the s_,rn_of fault and error latencies. Since there does not exist a direct

way to determine the moment of error generation, these experiments fail to indicate the

moment of error generation which divides the detection time into fault latency and error

latency. Instead, a combined effect of the inherent fault property and an associated

detection operation can be observed via these experiments. Thus, these experiments nei-

ther help us understand the behavior of fault and error generation, nor give an accurate

measure of the capabilities of detection mechanisms. In order to remove this inade-

quacy, we develop here a methodology to measure fault latency; with the measured fault

latency and detection time, error latency can also be computed.

3.2. Me*.hodology for Measurement of F_ult Latency

Suppose there are some detection mechanisms which are able to detect the error

generated by a fault f . Let tI represent the fault latency of this specific fault, which is

a random variable with the distribution function FI (t). _Ve inject the fault f ni

times, and each injection is held active for the duration ti. If tI is greater than ti, then

no error will be generated. Otherwise, the fault manifests itself, inducing an error which

will be captured later by the detection mechanisms. If there are di detections among

these n i injections, then the ratio --di indicates the probability that an error is gen-
ni

erated during the fault active duration ti . This is equivalent to the probability that the

fault latency is smaller than t i. Thus, we obtain the distribution function of fault
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latency for the fault f as follows:

di
F/ (ti)----- Prob (t! <ti)-- (1)

fl i

Notice that this measurement of fault latency is not: affected by error latency. This

also implies that the result of measurement is independent of the efficiency of detection

mechanisms. Thus, as long as the error induced by the fault f can be detected, we can

obtain the distribution of fault latency for the fault f.

We cannot overemphasize the fact that the moment of error generation is not

directly observable. Although the occurrence of a logic failure caused by a fault can be

identified by voting, the logic failure does not always induce an error at the function

level. In other words, there may not exist a sensitized path such that the faulty signal

can propagate to the output stage. Consequently, we have proposed a new methodology

to indirectly measure the fault latency. Due to the "indirect" nature of our measure-

ment, we obtain the distribution of fault latency instead of actual samples of fault

latency. Clearly, this fact does not allow for any rigorous statistical analysis c.r our

experimental data. However, to our best knowledge, the proposed indirect methodology

is the first and the only attempt to measure fault latency.

3.3. Experimental Results and Analyals on FTMP

For our experiments, the original FIS (Fault Injection System) has been modified to

enable us to inject transient faults. 6 Additional features are added to the command

interpreter such that the active duration of a transient fault can be specified and passed

to the injection handler. Injection ends if either the response of the FTMP indicates the

accomplishment of detection, identification and reconfiguration, or the active duration

nl'he original FIS is designed for injecting permanent faults only.
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becomeslargerthanthespecifiedvalue.Inthelattercase,FISismade towaita few

secondsfora possibleresponsefromtheFTMP.

To measurefaultlatencyand demonstratethemethodologyproposedabove,tran-

sientfaultswereinjectedtofourcircuitboardsoftheFTMP, i.e.CPU DataPath,CPU

ControlPath,CacheController,and SystemBus Controller.The firstthreeboardsare

intheCAP6 processor/cacheregionwhichisconstructedwiththeAMD 2900seriesbit-

slicemicroprocessors.The SystemBus Controllerisresponsiblefortransferringblocksof

wordsbetweena localprocessorregionandthesharedmemory. Italsoservesasa syn-

chronizingmechanismsuchthattheprocessorsina triadcan bebroughtintofullsyn-

chrony.On eachboard,severalpinsareselectedforinjectingtransientfaults.Selection

of boardsand pinsismade arbitrarily.For each pin,stuck-at-0,stuck-at-I,and

invertedsignalsareinjected.

A prim_teatwas appliedtoeachselectedpintoobservewhetherornotan erroris

generatedaftertheinjectionofa permanentfault(whichhasan activedurationof3

second_ or more). In Wimmergren's experimentson the FTMP [33],undetected faultsare

reportedtoexist.Possibleexplanationfortheexistenceofundetectedfaultsare:(I)the

circuits are not exercised, (2) there are "don't care" or redundant pins, and (3) the

injected fault does not cause any logic failure. In our experiments, injection of transient

faults is not made if there is no detection during the prime test. At certain pins, errors

are detectedwhen stucbat-0 and invertedsignalfaults are injected,but not stuck-at-1

faults. In such a case, injection of stuck-at-1 faults is omitted. 7

For each pin, transient faults with different active durations are injected 10 to 40

times repeatedly. At an earlyexperiment,we found that di/n i increases sharplywhen

7Obviously,thereis no useof suchan injection.
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the transient durations are small. Thus, to have good resolution, the active duration of

the transient faults injected, denoted by ti, are not equally distanced. That is, we used a

finer resolution for small t i's and a coarser resolution for large ti 's. Moreover, since the

fault latency at the System Bus Controller board is much larger than that at the other

boards, ti's used for testing this board are different from those used for the others.

Among more than 20,000 transient faults injected, only 15,111 results are used for

the analysis. The other data are regarded unreliable because: (1) the fault identified by

the FTMP was not in the LRU where the fault was actually injected, (2) the FTMP

crashed during the fault injection, and (3) one of the detection, identification and recon-

figuration times was negative. If the second case occurred, the injection was performed

again. For every i and each type of fault at a pin, using the measured di/hi, we

obtained the averaged di/u i--F ! (ti) for each board, which are listed in Table 7. In

addition, we present hI (t_) in the table which is defined as

hI (t_) --- El (ti+!)-F l (ti)
(ti+l-t i )(I-F/(t i )) (2)

The function hI (ti) becomes the hazard rate of fault latency as ti+l-ti--_O.

Despite the fact that negative numbem appeared twice in Table 7, the functions hi (t i)

in the table strongly suggest that the hazard rate of fault latency be raonotor_edecreas-

ing. Thus, two distributions with monotone decreasing hazard rates, i.e., Weibull and

Gamma distributions, are used to fit the experimental results. Estimated parameters are

given in Table 7 where the least-squares errors are also included. The experimental

results and the estimated Weibull distribution are plotted in Figures 9 through 12.

The estimated parameter for exponential distributions is also presented in Table 8

for the purpose of comparison with WeihuU and Gamma distributions. It can be seen
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s-a-0 s-a-1 inverted

t,( ,,,._/ rt(t_) hl,t,) r_(ti) h_(ts) rl t_) h,(ti)

0.0 0.0 21.0 0.0 9.0 0.0 35.0
0.01 0.21 1.27 0.09 0.36 0.35 3.59
0.10 0.30 0.071 0.12 0.20 0.56 0.40
0.50 0.32 0.23 0.19 0.074 0.63 0.11
1.00 0.40 0.079 0.22 0.054 0.65 0.078
5.00 0.59 0.073 0.39 0.049 0.76 0.025

10.00 0.74 0.058 0.54 0.028 0.79 0.043
20.00 0.89 0.67 - 0.88 -

(a). Experimental Results and hl(ti) on Cache Controller.

s- a-0 s-a- 1 inverted

0.0 0.0 67.0 0.0 85.0 -
0.01 0.67 9.09 0.85 9.63
0.10 0.94 1.67 0.98 -3.75
0.50 0.98 2.00 0.95 1.20
1.00 1.00 - 0.98 0.11

10.00 0.98 0.01 1.00
20.00 1.00 1.00

(b). Experimental Results and hl(ti) on CPU Control Path.

Table 7. Experimental Results and Estimated h/(ti).
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s-a-O s-a-1 inverted

0.0 0.0 25.0 0.0 34.0 0.0 49.0

0.01 0.25 5.67 0.34 2.65 0.49 7.35
0.05 0.42 1.72 0.41 1.69 0.64 11.7

0.10 0.47 0.566 0.46 0.42 0.85 0.83
0.50 0.59 0.097 0.55 0.44 0.90 0.40
1.00 0.61 0.038 0.65 0.086 0.91 0.28
5.00 0.67 0.030 0.77 0.052 0.92 0.0
10.00 0.72 0.025 0.83 0.041 0.92 0.0125
20.00 0.79 0.90 - 0.93

(e). Experimental Results and hl(ti) on CPU Data Path.

s-a-0 s-a-1 inverted

t,( m s) F](ti) hi(t,) r_, ti) hi(ti) F_ t,) hi( ti)

0.0 0.0 0.040 0.0 0.032 0.0 0.036
5.0 0.20 -.013 0.16 0.050 0.35 0.036
10.0 0.15 0.0106 0.37 0.0079 0.55 0.021
20.0 0.24 0.0026 0.42 0.0138 0.63 0.016
50.0 0.30 0.0037 0.66 0.0011 0.65 0.0074

100.0 0.43 0.0068 0.68 0.0056 0.76 0.0053
200.0 0.82 0.010 0.86 0.01 0.79 0.001
300.0 1.00 - 1.00 - 0.88 -

(d). Experimental Results and hl(ti) on System Bus Controller.

Table 7. Experimental Results and Estimated hl(ti) (cont'd).
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Figure 9. The Experimental Results and Estimated Distributions for Stuck-at-O
Faults.
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Figure 11. The Experimental Results and Estimated Distributions for Inverted
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Figure 12. The Experimental Results and Estimated Distributions of Fault Laten-
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Exponential Weibull Gamma

1[k error 1IX q error 1/k c_ error

s-a-0 4.78 0.24 4.35 0.35 0.03 45.89 0.24 0.02
CC s-a-1 13.07 0.08 15.24 0.51 0.015 61.61 0.38 0.006

inverted 0.46 0.41 0.56 0.20 0.009 82.90 0.11 0.007

CPUC s-a-0 0.009 0.004 0.0076 0.39 0.0006 0.117 0.19 0.0008
s-a-1 0.005 0.003 0.001 0.27 0.0025 0.092 0.09 0.0029

s-a-0 0.515 0.539 1.488 0.21 0.021 153.9 0.12 0.018
CPUD s-a-1 0.628 0.31 0.799 0.23 0.006 56.79 0.13 0.0013

inverted 0.036 0.115 0.030 0.29 0.0026 0.648 0.18 0.032

s-a-O 125.2 0.063 124.9 0.89 0.061 173.2 0.77 0.057
SBC s-a-1 46.9 0.097 54.85 0.58 0.020 176.18 0.44 0.021

inverted 34.4 0.029 39.10 0.70 0.0045 80.44 0.58 0.0066

CC -- Cache Controller, CPUC -- CPU Control Path

CPUD -- CPU Data Path, SBC -- System Bus Controller

Table 8. Least-Squares Estimation of the Distributions of Fault Latencies.
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that the constant error generation rate (i.e. exponential distribution) does not model the

error generation well. The mean fault lateneies -- which are 1/X in the estimated

parameterof the exponentialdistribution-- range from O.O005msof stuck-at-1 faults in

the CPU Control Path to 125ms of stuck-at-0 faults in the System Bus Controller. This

was due to the different exercise rates at each board. Since each injected stuck-at-0 or

stuck-at-1 fault does not always represent a logic failure at the moment of injection, the

fault with an inverted signal should have a shorter fault latency: this is confirmed by the

experimental results.

As pointed out earlier, fault latency is not directly observable. This fact has led us

to the development of a new methodology which allows for indirect measurement of fault

latency. Note, however, that our experimental results give the distribution function of

fault latency instead of data samples of fault latency. Hence, statistical analyses or

hypotheses testing are not applicable to these experimental data. The least-squares esti-

mation with commonly used distributions gives only approximate values of the parame-

ters. They cannot test whether an underlying model is (statistically) good or bad.

Indeed, from the least-squares errors in Table 8 it is unclear which distribution has the

best fit. However, since the hazard rate converges to 1/), and 0 for Gamma and

Weibull distributions, respectively, it is possible to distinguish between them once addi-

tional injections with larger active durations are performed.

4. CONCLUSION AND DISCUSSION

In this report, we have presented first a model to be nse_dto study the workload

effects on performance for a highly reliable unibus multiprocessor used in critical real-

time applications. Because of the strict performance criteria required for systems of this

type, a detailed analysisis both desirable and necessary.
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The operation of the computing system addressed has been illustrated using a

modified Stochastic Petri Net{SPN). It was the purpose of this model to graphically

describe the synchronous operation of multiple processingclusters. It was desired to

show which aspects of the computer's operation have the most significant effect on the

computer's performance. Most certainly, system bus contention, workload distribution,

and idle processingperiodshave a markedeffect on performance.

The modified SPN was useful for the purpose of describing computer activity.

However, as a tool for performanceevaluation, it was shown to be too complex for

worthy analysis. A simplermodel has been presentedthat still describesthe critical per-

formance related facets. This model is a closed queueing network consisting of mul-

tiservernodes and a single non-preemptivepriorityqueue.

The queueingmodelwas shown to be easily solvedfor a set of given parameters. It

was also observed that useful results pertaining to system performancecould be directly

obtained from the solution to the queueing model. The ease of obtaining these results

and the overall importance of the results demonstrate the usefulnessof the model for the

purposeof performanceevaluation.

The area that merits further research is in determining the distribution of the

workload among different job classes. A systematic method has not been developedyet

to construct the various job classes from the workload of a real-time control system.

Characterization of real-time workloadsis a more restricted problem than dealing with

the workloads of a general purpose computer. This motivates continued research in

solving the workload distribution problem.Once a characterization method is developed,

one can then consider the possibility of obtaining an optimal workload distribution to

provide optimal performance.
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We have also developed a new methodology for indirectly measuring fault latency

with the injection of faults. The methodology has been realized by experiments on the

FTMP. The FTMP experimental results show a large variation in fault latencies for dif-

ferent circuits. It has also been observed that the hazard rate of fault latency is mono-

tone decreasing. This implies that a fault tends to be latent if it did not generate an

error at its early stage. The existence of a long fault latency should not be ignored in

highly reliable systems. To reduce the accumulation of latent faults, additional on-line

diagnostics must be incorporated into the area where a long fault latency exists, s

Although two possible distributions are used to fit the experimental results, no

underlying model for fault latency can be concluded. It is mainly because of the unob-

servability of error generation. More experiments should be designed to investigate the

behavior of a fault and its effect on system execution. An immediate extension of our

experiments is to make the injections under different system workloads or the execution

of different application tasks. We expect to see some variations of fault latency in cer-

tain circuits.

During the FTMP experiments, some interesting points were observed, especially

when the faults were injected into the System Bus Control. At certain pins, identifica-

tion results were different for various active durations of injections. For instance, with a

long (in relative to fault latency) active duration, the SCC indicated that the whole LRU

was faulty, but indicated that only a processor or memory was faulty when the active

duration was short. This situation was sometimes reversed. In other words, the identifi-

cation results by the SCC depend on both the location of injection and the active dura-

tion of the fault. For the injections in the other boards, e.g., Cache controller, CPU

_3uchareascan be identifiedby the methodologyproposedin this report.
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Data and Control Path, a processor was identified as faulty. Note that the System Bus

Controller is the interface between the processor region and system buses. These obser-

vations show that the errors do not propagate out of the processor boundary. They also

suggest that an error easily propagates from interface circuits, but the identification of a

faulty interface circuit is more difficult.

In addition, we encountered several problems that were inconsistent with the

FTMP's specification. This forced us to abandon some experimental results. Specifi-

cally, fault injections to the System Bus Controller caused the FTMP to generate fre-

quent system crashes or have wrong identifications. Certainly, the FTMP could not dis-

tinguish between the injection of a fault from the true occurrence of a fault. These

abnormalities occurred too frequently to be treated as random failures. In addition, only

210 responses from the FTMP indicated that the detected faults were transient, even

when faults with a 10 micro-second active duration were injected. In fact, all injections

of transient faults in the Cache Controller, CPU Data and Control Path were regarded

as permanent. A thorough verification is needed for the FTMP's detection and identifi-

cation mechanisms. This is a matter for our future research.
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