58 research outputs found

    The Nearby Type Ibn Supernova 2015G: Signatures of Asymmetry and Progenitor Constraints

    Get PDF
    SN 2015G is the nearest known SN Ibn to date at 23.2 Mpc and it has proven itself a truly remarkable example of this rare subclass. We present the results of an extensive observational campaign including data from radio through ultraviolet wavelengths. SN 2015G was asymmetric, showing late-time nebular lines redshifted by 1000 km/s. It shared many features with the prototypical SN Ibn 2006jc, including extremely strong He I emission lines and a late-time blue pseudocontinuum. The young SN 2015G showed narrow P-Cygni profiles of He I, but never in its evolution did it show any signature of hydrogen - arguing for a dense, ionized, and hydrogen-free circumstellar medium moving outward with a velocity of 1000 km/s and created by relatively recent mass loss from the progenitor star. Ultraviolet through infrared observations show that the fading SN 2015G (which was probably discovered some 20 days post-peak) had a spectral energy distribution that was well described by a simple, single-component blackbody. Archival HST images provide upper limits on the luminosity of SN 2015G's progenitor, while nondetections of any luminous radio afterglow and optical nondetections of outbursts over the past two decades provide constraints upon its mass-loss history

    Type Ia Supernovae as Stellar Endpoints and Cosmological Tools

    Full text link
    Empirically, Type Ia supernovae are the most useful, precise, and mature tools for determining astronomical distances. Acting as calibrated candles they revealed the presence of dark energy and are being used to measure its properties. However, the nature of the SN Ia explosion, and the progenitors involved, have remained elusive, even after seven decades of research. But now new large surveys are bringing about a paradigm shift --- we can finally compare samples of hundreds of supernovae to isolate critical variables. As a result of this, and advances in modeling, breakthroughs in understanding all aspects of SNe Ia are finally starting to happen.Comment: Invited review for Nature Communications. Final published version. Shortened, update

    X-Ray Emitting Blast Wave from the Recurrent Nova RS Ophiuchi

    Get PDF
    Stellar explosions such as novae and supernovae produce most of the heavy elements in the Universe. Although the onset of novae from runaway thermonuclear fusion reactions on the surface of a white dwarf in a binary star system is understood[1], the structure, dynamics, and mass of the ejecta are not well known. In rare cases, the white dwarf is embedded in the wind nebula of a red-giant companion; the explosion products plow through the nebula and produce X-ray emission. Early this year, an eruption of the recurrent nova RS Ophiuchi[2,3] provided the first opportunity to perform comprehensive X-ray observations of such an event and diagnose conditions within the ejecta. Here we show that the hard X-ray emission from RS Ophiuchi early in the eruption emanates from behind a blast wave, or outward-moving shock wave, that expanded freely for less than 2 days and then decelerated due to interaction with the nebula. The X-rays faded rapidly, suggesting that the blast wave deviates from the standard spherical shell structure[4-6]. The early onset of deceleration indicates that the ejected shell had a low mass, the white dwarf has a high mass[7], and that RS Ophiuchi is a progenitor of the type of supernova integral to studies of the expansion of the universe.Comment: To appear in Nature; 7 pages, including 2 color figures; removed incorrect statement of embargo polic

    Alternative High-z Cosmic Tracers and the Dark Energy Equation of State

    Full text link
    We propose to use alternative cosmic tracers to measure the dark energy equation of state and the matter content of the Universe [w(z) & \Omega_m]. Our proposed method consists of two components: (a) tracing the Hubble relation using HII-like starburst galaxies, as an alternative to SNIa, which can be detected up to very large redshifts, z~4, and (b) measuring the clustering pattern of X-ray selected AGN at a median redshift of ~1. Each component of the method can in itself provide interesting constraints on the cosmological parameters, especially under our anticipation that we will reduce the corresponding random and systematic errors significantly. However, by joining their likelihood functions we will be able to put stringent cosmological constraints and break the known degeneracies between the dark energy equation of state (whether it is constant or variable) and the matter content of the universe and provide a powerful and alternative rute to measure the contribution to the global dynamics, and the equation of state, of dark energy. A preliminary joint analysis of X-ray selected AGN (based on a small XMM survey) and the currently largest SNIa sample (Kowalski et al 2008), provides: Omega_m=0.28^{+0.02}_{-0.04} and w=-1.0 +-0.1.Comment: 19 pages, 11 figures, to appear in JOP, proceedings of the "Recent Developments in Gravity, NEB XIII" conference, held in Thessaloniki, Macedonia, Greece, 4-6 June 200

    The Sloan Digital Sky Survey quasar catalog: tenth data release

    Get PDF
    We present the Data Release 10 Quasar (DR10Q) catalog from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. The catalog includes all BOSS objects that were targeted as quasar candidates during the first 2.5 years of the survey and that are confirmed as quasars via visual inspection of the spectra, have luminosities M-i[z = 2] 2.15 (117 668) is similar to 5 times greater than the number of z > 2.15 quasars known prior to BOSS. Redshifts and FWHMs are provided for the strongest emission lines (C IV, C III, Mg II). The catalog identifies 16 461 broad absorption line quasars and gives their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag and information on the optical morphology and selection method. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3600-10 500 angstrom at a spectral resolution in the range 1300 < R < 2500; the spectra can be retrieved from the SDSS Catalog Archive Server. We also provide a supplemental list of an additional 2376 quasars that have been identified among the galaxy targets of the SDSS-III/BOSS

    Spectroscopic Observations and Analysis of the Peculiar SN 1999aa

    Full text link
    We present an extensive new time-series of spectroscopic data of the peculiar SN 1999aa in NGC 2595. Our data set includes 25 optical spectra between -11 and +58 days with respect to B-band maximum light, providing an unusually complete time history. The early spectra resemble those of a SN 1991T-like object but with a relatively strong Ca H&K absorption feature. The first clear sign of Si II 6355, characteristic of Type Ia supernovae, is found at day -7 and its velocity remains constant up to at least the first month after B-band maximum light. The transition to normal-looking spectra is found to occur earlier than in SN 1991T suggesting SN 1999aa as a possible link between SN 1991T-like and Branch-normal supernovae. Comparing the observations with synthetic spectra, doubly ionized Fe, Si and Ni are identified at early epochs. These are characteristic of SN 1991T-like objects. Furthermore, in the day -11 spectrum, evidence is found for an absorption feature which could be identified as high velocity C II 6580 or H-alpha. At the same epoch C III 4648.8 at photospheric velocity is probably responsible for the absorption feature at 4500 A. High velocity Ca is found around maximum light together with Si II and Fe II confined in a narrow velocity window. Implied constraints on supernovae progenitor systems and explosion hydrodynamical models are briefly discussed.Comment: 46 pages including 23 figures. Accepted for publication by AJ. For full-resolution figures see http://www.physto.se/~gabri/sn99aa

    The establishment of the Standard Cosmological Model through observations

    Full text link
    Over the last decades, observations with increasing quality have revolutionized our understanding of the general properties of the Universe. Questions posed for millenia by mankind about the origin, evolution and structure of the cosmos have found an answer. This has been possible mainly thanks to observations of the Cosmic Microwave Background, of the large-scale distribution of matter structure in the local Universe, and of type Ia supernovae that have revealed the accelerated expansion of the Universe. All these observations have successfully converged into the so-called "concordance model". In spite of all these observational successes, there are still some important open problems, the most obvious of which are what generated the initial matter inhomogeneities that led to the structure observable in today's Universe, and what is the nature of dark matter, and of the dark energy that drives the accelerated expansion. In this chapter I will expand on the previous aspects. I will present a general description of the Standard Cosmological Model of the Universe, with special emphasis on the most recent observations that have us allowed to consolidate this model. I will also discuss the shortfalls of this model, its most pressing open questions, and will briefly describe the observational programmes that are being planned to tackle these issues.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556
    • …
    corecore