495 research outputs found

    Rate 3/4 coded 16-QAM for uplink applications

    Get PDF
    First phase development of an advanced modulation technology which synergistically combines coding and modulation to achieve 2 bits per second per Hertz bandwidth efficiency in satellite demodulators is nearing completion. A proof-of-concept model is being developed to demonstrate technology feasibility, establish practical bandwidth efficiency limitations, and provide a data base for the design and development of engineering model satellite demodulators. The basic considerations leading to the choice of 4 x 4 quadrature amplitude modulation (16-QAM) and its associated coding format are discussed, along with the basic implementation of the carrier and clock recovery, automatic gain control, and decoding process. Preliminary performance results are presented. Spectra for the modulated signal shows the effects of the square root Nyquist filters in the modulation. Bit error rate (BER) results for the encoder/decoder subsystem show near ideal results, although power consumption is high and baseband BER performance of the Nyquist filter set is poor. Recommendations regarding the present system to improve BER performance and acquisition speed are given

    Modeling of High Pressure Confined Inflatable Structures

    Get PDF
    Safety of transportation tunnels is a top priority among transportation agencies and public administrators and a very important aspect in the daily operation of a tunnel system. However, it is always a challenge to create and integrate protection systems in existing tunnels to prevent or at least mitigate the occurrence of hazardous events such as spread of smoke or noxious fumes, flooding, among others. Typically there two ways for preventing or mitigating the occurrence of hazardous events: one is the implementation of permanent solutions and, the second one, is the use of temporary solutions. Permanent solutions usually have relatively high sealing efficiency due to their solid and rigid sealing mechanisms such as bulkheads and floodgates. However, they can be extremely expensive and sometimes difficult to build or install due to physical, economical or operational constraints. On the other hand, temporary solutions, which can be relatively low cost and easy to install, offer a temporary countermeasure while permanent repairs are implemented. The development of flexible structures, such as inflatable plugs for temporary solutions is becoming a viable alternative for protection of transportation tunnels and other similar critical civil infrastructure.;The Resilient Tunnel System (RTS) is a passive tunnel protection system developed at West Virginia University (WVU). This system is intended to prevent or minimize the damage induced by hazardous events by creating a compartment to contain the threat. The Resilient Tunnel System implements inflatable structures at specific locations of the tunnel to seal up the tunnel and create a compartment to isolate the compromised region. WVU has conducted several validation tests on full scale inflatable structures designed to mitigate flooding in an actual rail transportation tunnel and in specially built testing facilities. However, testing at full scale either in an actual tunnel or in specially built testing facilities, is a very complex and resource demanding task. It can take several iterations to achieve desired results which cannot be accurately predicted in advance. Therefore, the development of numerical models using Finite Element Analysis becomes imperative in order to: first, reproduce experimental work done at WVU using different prototypes at different scales; and then use the calibrated models as predicting tool that can anticipate the outcome of experiments and eventually reduce its number due to the intrinsic complexity and cost.;This dissertation aims to present the results of the development of Finite Element Models of confined inflatable structures designed to withstand flooding pressures. Models of different prototypes were created and analyzed in order to reproduce experimental results. Numerical results show that the adjusted models can reproduce experimental results, ranging from deployment, full pressurization and induced failure, with a great degree of accuracy providing a reliable predicting tool for evaluation of alternative configurations and parametric studies

    Impaired Cardiac Function in Viral Myocarditis

    Get PDF

    Faculty Recital: Rebecca Ansel, violin, & Jerry Wong, piano

    Get PDF

    Faculty Recital: Jerry Wong & Stephanie Shih-yu Cheng, piano

    Get PDF

    Concert: Ithaca College Piano Ensemble

    Get PDF

    On the use of control surface excitation in flutter testing

    Full text link
    peer reviewedFlutter testing is aimed at demonstrating that the aircraft flight envelope is flutter free. Response measurements from deliberate excitation of the structure are used to identify and track frequency and damping values against velocity. In this paper, the common approach of using a flight control surface to provide the excitation is examined using a mathematical model of a wing and control surface whose rotation is restrained by a simple actuator. In particular, it is shown that it is essential to use the demand signal to the actuator as a reference signal for data processing. Use of the actuator force (or strain) or control angle (or actuator displacement) as a reference signal is bad practice because these signals contain response information. It may also be dangerous in that the onset of flutter may not be seen in the test results

    Symmetry and Measuring: Ways to Teach the Foundations of Mathematics Inspired by Yupiaq Elders

    Get PDF
    Evident in human prehistory and across immense cultural variation in human activities, symmetry has been perceived and utilized as an integrative and guiding principle. In our long-term collaborative work with Indigenous Knowledge holders, particularly Yupiaq Eskimos of Alaska and Carolinian Islanders in Micronesia, we were struck by the centrality of symmetry and measuring as a comparison-of-quantities, and the practical and conceptual role of qukaq [center] and ayagneq [a place to begin]. They applied fundamental mathematical principles associated with symmetry and measuring in their everyday activities and in making artifacts. Inspired by their example, this paper explores the question: Could symmetry and measuring provide a systematic and integrative way to teach the foundations of mathematical thinking? We illustrate how the fundamental structures of symmetry, measuring, and comparison-of-quantities, starting with the embodied orthogonal axes, form a basis for properties of equality, aspects of numbers and operations (including place value), geometry and number line representations, functions, algebraic reasoning, and measurement. We conclude by embedding the earlier geometric constructions of triangles and squares within the unit circle and making explicit connections to trigonometric functions

    RIPK1 Mediates TNF-Induced Intestinal Crypt Apoptosis During Chronic NF-kappaB Activation

    Get PDF
    BACKGROUND AND AIMS: Tumor necrosis factor (TNF) is a major pathogenic effector and a therapeutic target in inflammatory bowel disease (IBD), yet the basis for TNF-induced intestinal epithelial cell (IEC) death is unknown, because TNF does not kill normal IECs. Here, we investigated how chronic nuclear factor (NF)- kappaB activation, which occurs in human IBD, promotes TNF-dependent IEC death in mice. METHODS: Human IBD specimens were stained for p65 and cleaved caspase-3. C57BL/6 mice with constitutively active IKKbeta in IEC (Ikkbeta(EE)(IEC)), Ripk1(D138N/D138N) knockin mice, and Ripk3(-/-) mice were injected with TNF or lipopolysaccharide. Enteroids were also isolated from these mice and challenged with TNF with or without RIPK1 and RIPK3 inhibitors or butylated hydroxyanisole. Ripoptosome-mediated caspase-8 activation was assessed by immunoprecipitation. RESULTS: NF-kappaB activation in human IBD correlated with appearance of cleaved caspase-3. Congruently, unlike normal mouse IECs that are TNF-resistant, IECs in Ikkbeta(EE)(IEC) mice and enteroids were susceptible to TNF-dependent apoptosis, which depended on the protein kinase function of RIPK1. Constitutively active IKKbeta facilitated ripoptosome formation, a RIPK1 signaling complex that mediates caspase-8 activation by TNF. Butylated hydroxyanisole treatment and RIPK1 inhibitors attenuated TNF-induced and ripoptosome-mediated caspase-8 activation and IEC death in vitro and in vivo. CONCLUSIONS: Contrary to common expectations, chronic NF-kappaB activation induced intestinal crypt apoptosis after TNF stimulation, resulting in severe mucosal erosion. RIPK1 kinase inhibitors selectively inhibited TNF destructive properties while preserving its survival and proliferative properties, which do not require RIPK1 kinase activity. RIPK1 kinase inhibition could be a potential treatment for IBD
    • …
    corecore