1,421 research outputs found

    Discharge based processing systems for nitric oxide remediation

    Get PDF
    An electron beam (EB) flue gas test rig and a dielectric barrier discharge (DBD) reactor were tested for the removal of nitric oxide (NO) from gas stream in separate experiments. In both systems, energised electrons were used to produce radicals that reacted with the pollutants. The EB system was a laboratory scale test rig used to treat emission from a diesel run generator. At 1.0 MeV and 10 mA more than 90% NO removal from flue gases flowing at 120 Nm3/h can be achieved. For higher removal percentage, higher beam current was required. In a related effort, a table top, two tubes DBD reactor was used to process bottled gases containing 106 ppm NO. Total removal (>99%) was achieved when the inlet gas contained only NO and N2. Additional SO2 in the in let gas stream lowered the removal rate but was overcame by scaling up the system to 10 DBD tubes. The system was operated with input AC voltage of 35 kV peak to peak. In the EB treatment system, the amount of NO2 increased at high beam current, showing that the NO was also oxidised in the process. Whereas in the DBD reactor, the amount of NO2 remained insignificant throughout the process. This leads to the conclusion that the DBD reactor is capable of producing total removal of NO. This is highly desirable as post treatment will not be necessary

    The chemokine lymphotactin and its recombinant variants in oral cancer cell regulation

    Get PDF
    Background The expression of XCR1 receptor and its metamorphic ligand lymphotactin (hLtn) has been shown in cancers but their precise role in tumorigenesis is poorly understood including the significance of the physiologically existing hLtn monomeric (CC3) and dimeric (W55D) confirmations where the latter thought to function as the receptor antagonist. The aim of this study was to explore the functional role of bioengineered hLtn variants and the role of fibroblasts in XCR1/hLtn expression regulation in oral cancer cells (OCCL). Material and methods qRT‐PCR and flow cytometry were performed to evaluate mRNA and protein expression of XCR1 and hLtn. Recombinant hLtn variants (wild‐type, CC3 and W55D mutant) were designed, expressed, purified and evaluated using proliferation, adhesion and chemotaxis assays. XCR1 and hLtn expression regulation by fibroblasts was determined using indirect co‐culture. XCR1 and hLtn expression in primary and metastatic OSCC tissue was assessed using immunohistochemistry. Results hLtn caused a significant decrease in OCCL XCR1 surface protein expression. hLtn CC3 mutant was highly functional facilitating proliferation and migration. Conditioned media from primary cancer‐associated and senescent fibroblasts significantly upregulated XCR1 and hLtn mRNA expression in OCCL. Immunohistochemistry revealed higher XCR1 and hLtn expression in metastatic tumour deposits and surrounding stroma compared to primary OSCC tissue. Conclusions The development of hLtn biological mutants, regulation of XCR1 expression by its ligand hLtn and crosstalk with fibroblasts are novel findings suggesting an important role for the XCR1/hLtn axis within the OSCC tumour microenvironment. These discoveries build upon previous studies and suggest that the hLtn/XCR1 axis has a significant role in stromal crosstalk and OSCC progression

    Wintertime CO2 Emission from Soils of Northeastern Siberia

    Get PDF
    The emission of C02 from northeastern Siberian soil was estimated for the period December 1989 to February 1990. Concentrations of air CO2 near the ground and 1 m above the snow cover were measured by an infrared gas analyzer. Fluxes of CO2 across the snow cover were calculated from the differences of these two values and the predetermined CO2 transfer coefficients at various flux rates through a layer of snow. Temperature and moisture content of the soil profiles were also observed simultaneously. The average transfer coefficient of CO2 for packed snow measured in the winter of 1989/90 was about 0.28 sq. cm/s. This value was used to estimate the average CO2 flux from soil: 0.26 g C/sq. m/day in December 1989, 0.13 g C/sq. m/day in January 1990 and 0.07 g C/sq. m/day in February 1990. Thus a minimal total of about 13.8 g C/sq. m had been released from the tundra soil during the 90 days from December 1989 to February 1990. Using the study by Kelley et al. (1968) and assuming that the minimal CO2 transfer coefficient is also applicable for the entire tundra and Northern Taiga zones between September and June, the total emission from this region would amount to 0.23 x 10**15 g of carbon. The main source of this CO2 probably originated from microbial oxidation of soil organic matter. This assertion is supported by the existence of a relatively warm layer in the frozen soil at 40-120 cm depth. This warm layer was about 10-40 C higher than the ambient air, or about 5-10 C higher than the soil surface, and its moisture content was also higher than the surrounding layers.Key words: CO2 flux, Siberian tundra, soil temperature, moisture contentOn a évalué l'émission de CO2 provenant du sol dans le nord-est sibérien, durant la période allant de décembre 1989 à février 1990. On a mesuré les concentrations du CO2 ambiant près du sol et à 1 m de la couverture de neige, à l'aide d'un analyseur de gaz infrarouge. On a calculé les flux du CO2 à travers le couvert nival à partir des différences de ces deux valeurs et des coefficients de transfert du CO2 prédéterminés pour divers taux de flux à travers une couche de neige. On a aussi observé simultanément la température et la teneur en humidité des profils pédologiques. Le coefficient de transfert moyen du CO2 pour la neige tassée mesuré durant l'hiver de 1989-90 était d'environ 0,28 cm²/s. Cette valeur a servi à estimer le flux moyen du CO2 provenant du sol: 0,26 g C/m²/jour en décembre 1989, 0,13 g C/m²/jour en janvier 1990 et 0,07 g C/m²/jour en février 1990. Par conséquent, un total minimal d'environ 13,8 g C/m² a été libéré du sol de la toundra au cours des 90 jours allant de décembre à février 1990. En nous servant de l'étude menée précédemment par Kelley et al. (1968) et en supposant que le coefficient minimal de transfert du CO2 s'applique aussi à l'ensemble des zones de toundra et de taïga septentrionale entre septembre et juin, l'émission totale provenant de cette région se monterait à 0,23 x 10**15 g de carbone. La source principale de ce CO2 venait probablement de l'oxydation microbienne de la matière organique contenue dans le sol. Cette assertion est soutenue par l'existence d'une couche de température relativement élevée dans le sol gelé, qui se trouve de 40 à 120 cm de profondeur. La température de cette couche était de 10 à 40 °C plus élevée que l'air ambiant, ou environ de 5 à 10 °C plus élevée que la surface du sol, et sa teneur en eau était aussi plus élevée que les couches adjacentes.Mots clés : flux de CO2, toundra sibérienne, temperature du sol, teneur en ea

    Quantum Dynamics in Non-equilibrium Strongly Correlated Environments

    Full text link
    We consider a quantum point contact between two Luttinger liquids coupled to a mechanical system (oscillator). For non-vanishing bias, we find an effective oscillator temperature that depends on the Luttinger parameter. A generalized fluctuation-dissipation relation connects the decoherence and dissipation of the oscillator to the current-voltage characteristics of the device. Via a spectral representation, this result is generalized to arbitrary leads in a weak tunneling regime.Comment: 4 pages, 1 figur

    Examination of silver-graphite lithographically printed resistive strain sensors

    Get PDF
    This paper reports the design and manufacture of three differing types of resistive strain sensitive structures fabricated using the Conductive Lithographic Film (CLF) printing process. The structures, utilising two inks prepared with silver and graphite particulates as the conductive phase, have been analysed to determine electrical and mechanical properties with respect to strain, temperature and humidity when deposited on four alternative substrate materials (GlossArt, PolyArt, Teslin and Melinex)

    Emission of thermal photons and the equilibration time in Heavy-Ion collisions

    Get PDF
    The emission of hard real photons from thermalized expanding hadronic matter is dominated by the initial high-temperature expansion phase. Therefore, a measurement of photon emission in ultrarelativistic heavy-ion collisions provides valuable insights into the early conditions realized in such a collision. In particular, the initial temperature of the expanding fireball or equivalently the equilibration time of the strongly interacting matter are of great interest. An accurate determination of these quantities could help to answer the question whether or not partonic matter (the quark gluon plasma) is created in such collisions. In this work, we investigate the emission of real photons using a model which is based on the thermodynamics of QCD matter and which has been shown to reproduce a large variety of other observables. With the fireball evolution fixed beforehand, we are able to extract limits for the equilibration time by a comparison with photon emission data measured by WA98.Comment: 12 pages, 5 figures, accepted for publication at Phys. Rev.

    Cosmological parameters from large scale structure - geometric versus shape information

    Full text link
    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\nu presently derived from LSS combined with cosmic microwave background (CMB) data does not in fact arise from the possible small-scale power suppression due to neutrino free-streaming, if we limit the model framework to minimal LambdaCDM+m_\nu. However, in more complicated models, such as those extended with extra light degrees of freedom and a dark energy equation of state parameter w differing from -1, shape information becomes crucial for the resolution of parameter degeneracies. This conclusion will remain true even when data from the Planck surveyor become available. In the course of our analysis, we introduce a new dewiggling procedure that allows us to extend consistently the use of the SDSS HPS to models with an arbitrary sound horizon at decoupling. All the cases considered here are compatible with the conservative 95%-bounds \sum m_\nu < 1.16 eV, N_eff = 4.8 \pm 2.0.Comment: 18 pages, 4 figures; v2: references added, matches published versio

    Friedel Oscillations in Relativistic Nuclear Matter

    Get PDF
    We calculate the low-momentum N-N effective potential obtained in the OBE approximation, inside a nuclear plasma at finite temperature, as described by the relativistic σ \sigma -ω \omega model. We analyze the screening effects on the attractive part of the potential in the intermediate range as density or temperature increase. In the long range the potential shows Friedel-like oscillations instead of the usual exponential damping. These oscillations arise from the sharp edge of the Fermi surface and should be encountered in any realistic model of nuclear matter.Comment: 11 pages in preprint format, typeset using REVTEX, 3 included figures in tar, compressed, uuencoded forma

    The effect of neutrinos on the matter distribution as probed by the Intergalactic Medium

    Full text link
    We present a suite of full hydrodynamical cosmological simulations that quantitatively address the impact of neutrinos on the (mildly non-linear) spatial distribution of matter and in particular on the neutral hydrogen distribution in the Intergalactic Medium (IGM), which is responsible for the intervening Lyman-alpha absorption in quasar spectra. The free-streaming of neutrinos results in a (non-linear) scale-dependent suppression of power spectrum of the total matter distribution at scales probed by Lyman-alpha forest data which is larger than the linear theory prediction by about 25% and strongly redshift dependent. By extracting a set of realistic mock quasar spectra, we quantify the effect of neutrinos on the flux probability distribution function and flux power spectrum. The differences in the matter power spectra translate into a ~2.5% (5%) difference in the flux power spectrum for neutrino masses with Sigma m_{\nu} = 0.3 eV (0.6 eV). This rather small effect is difficult to detect from present Lyman-alpha forest data and nearly perfectly degenerate with the overall amplitude of the matter power spectrum as characterised by sigma_8. If the results of the numerical simulations are normalized to have the same sigma_8 in the initial conditions, then neutrinos produce a smaller suppression in the flux power of about 3% (5%) for Sigma m_{\nu} = 0.6eV(1.2eV)whencomparedtoasimulationwithoutneutrinos.WepresentconstraintsonneutrinomassesusingtheSloanDigitalSkySurveyfluxpowerspectrumaloneandfindanupperlimitofSigmamν<0.9 eV (1.2 eV) when compared to a simulation without neutrinos. We present constraints on neutrino masses using the Sloan Digital Sky Survey flux power spectrum alone and find an upper limit of Sigma m_{\nu} < 0.9 eV (2 sigma C.L.), comparable to constraints obtained from the cosmic microwave background data or other large scale structure probes.Comment: 38 pages, 21 figures. One section and references added. JCAP in pres

    Statistical mechanics of the random K-SAT model

    Full text link
    The Random K-Satisfiability Problem, consisting in verifying the existence of an assignment of N Boolean variables that satisfy a set of M=alpha N random logical clauses containing K variables each, is studied using the replica symmetric framework of diluted disordered systems. We present an exact iterative scheme for the replica symmetric functional order parameter together for the different cases of interest K=2, K>= 3 and K>>1. The calculation of the number of solutions, which allowed us [Phys. Rev. Lett. 76, 3881 (1996)] to predict a first order jump at the threshold where the Boolean expressions become unsatisfiable with probability one, is thoroughly displayed. In the case K=2, the (rigorously known) critical value (alpha=1) of the number of clauses per Boolean variable is recovered while for K>=3 we show that the system exhibits a replica symmetry breaking transition. The annealed approximation is proven to be exact for large K.Comment: 34 pages + 1 table + 8 fig., submitted to Phys. Rev. E, new section added and references update
    corecore