The matter power spectrum as derived from large scale structure (LSS) surveys
contains two important and distinct pieces of information: an overall smooth
shape and the imprint of baryon acoustic oscillations (BAO). We investigate the
separate impact of these two types of information on cosmological parameter
estimation, and show that for the simplest cosmological models, the broad-band
shape information currently contained in the SDSS DR7 halo power spectrum (HPS)
is by far superseded by geometric information derived from the baryonic
features. An immediate corollary is that contrary to popular beliefs, the upper
limit on the neutrino mass m_\nu presently derived from LSS combined with
cosmic microwave background (CMB) data does not in fact arise from the possible
small-scale power suppression due to neutrino free-streaming, if we limit the
model framework to minimal LambdaCDM+m_\nu. However, in more complicated
models, such as those extended with extra light degrees of freedom and a dark
energy equation of state parameter w differing from -1, shape information
becomes crucial for the resolution of parameter degeneracies. This conclusion
will remain true even when data from the Planck surveyor become available. In
the course of our analysis, we introduce a new dewiggling procedure that allows
us to extend consistently the use of the SDSS HPS to models with an arbitrary
sound horizon at decoupling. All the cases considered here are compatible with
the conservative 95%-bounds \sum m_\nu < 1.16 eV, N_eff = 4.8 \pm 2.0.Comment: 18 pages, 4 figures; v2: references added, matches published versio