510 research outputs found

    Scattering amplitudes at finite temperature

    Full text link
    We present a simple set of rules for obtaining the imaginary part of a self energy diagram at finite temperature in terms of diagrams that correspond to physical scattering amplitudes.Comment: 23 pages in Revtex, with 33 eps-figure

    A remark on non-Abelian classical kinetic theory

    Get PDF
    It is known that non-Abelian classical kinetic theory reproduces the Hard Thermal/Dense Loop (HTL/HDL) effective action of QCD, obtained after integrating out the hardest momentum scales from the system, as well as the first higher dimensional operator beyond the HTL/HDL level. We discuss here its applicability at still higher orders, by comparing the exact classical effective action obtained in the static limit, with the 1-loop quantum effective potential. We remark that while correct types of operators arise, the classical colour algebra reproduces correctly the prefactor of the 4-point function trA04tr A_0^4 only for matter in asymptotically high dimensional colour representations.Comment: 6 page

    Non-Linear Vibrations in Nuclei

    Full text link
    We have perfomed Time Dependant Hartree-Fock (TDHF) calculations on the non linear response of nuclei. We have shown that quadrupole (and dipole) motion produces monopole (and quadrupole) oscillations in all atomic nuclei. We have shown that these findings can be interpreted as a large coupling between one and two phonon states leading to large anharmonicities.Comment: 4 pages, 3 figure

    Out-of-equilibrium electromagnetic radiation

    Full text link
    We derive general formulas for photon and dilepton production rates from an arbitrary non-equilibrated medium from first principles in quantum field theory. At lowest order in the electromagnetic coupling constant, these relate the rates to the unequal-time in-medium photon polarization tensor and generalize the corresponding expressions for a system in thermodynamic equilibrium. We formulate the question of electromagnetic radiation in real time as an initial value problem and consistently describe the virtual electromagnetic dressing of the initial state. In the limit of slowly evolving systems, we recover known expressions for the emission rates and work out the first correction to the static formulas in a systematic gradient expansion. Finally, we discuss the possible application of recently developed techniques in non-equilibrium quantum field theory to the problem of electromagnetic radiation. We argue, in particular, that the two-particle-irreducible (2PI) effective action formalism provides a powerful resummation scheme for the description of multiple scattering effects, such as the Landau-Pomeranchuk-Migdal suppression recently discussed in the context of equilibrium QCD.Comment: 34 pages, 9 figures, uses JHEP3.cl

    Longitudinal Scaling of Elliptic Flow in Landau Hydrodynamics

    Get PDF
    This study presents generalization of the Landau hydrodynamic solution for multiparticle production applied to non-central relativistic heavy ion collisions. Obtained results shows longitudinal scaling of elliptic flow v2v_2 as a function of rapidity shifted by beam rapidity (yybeamy-y_{beam}) for different energies (sNN=62.4\sqrt{s_{NN}}=62.4 GeV and 200 GeV) and for different systems (Au-Au and Cu-Cu). It is argued, that the elliptic flow and its longitudinal scaling is due to the initial transverse energy density distribution and initial longitudinal thickness effect.Comment: 7 pages 1 figur

    Hard Dense Loops in a Cold Non-Abelian Plasma

    Get PDF
    Classical transport theory is used to study the response of a non-Abelian plasma at zero temperature and high chemical potential to weak color electromagnetic fields. In this article the parallelism between the transport phenomena occurring in a non-Abelian plasma at high temperature and high density is stressed. Particularly, it is shown that at high densities it is also possible to relate the transport equations to the zero-curvature condition of a Chern-Simons theory in three dimensions, even when quarks are not considered ultrarelativistic. The induced color current in the cold plasma can be expressed as an average over angles, which represent the directions of the velocity vectors of quarks having Fermi energy. From this color current it is possible to compute nn-point gluonic amplitudes, with arbitrary nn. It is argued that these amplitudes are the same as the ones computed in the high chemical potential limit of QCD, that are then called hard dense loops. The agreement between the two different formalisms is checked by computing the polarization tensor of QED due to finite density effects in the high density limit.Comment: 16 pages, Revtex, final version to appear in Phys. Rev. D with minor correction

    Dynamical Renormalization Group Approach to Quantum Kinetics in Scalar and Gauge Theories

    Get PDF
    We derive quantum kinetic equations from a quantum field theory implementing a diagrammatic perturbative expansion improved by a resummation via the dynamical renormalization group. The method begins by obtaining the equation of motion of the distribution function in perturbation theory. The solution of this equation of motion reveals secular terms that grow in time, the dynamical renormalization group resums these secular terms in real time and leads directly to the quantum kinetic equation. We used this method to study the relaxation in a cool gas of pions and sigma mesons in the O(4) chiral linear sigma model. We obtain in relaxation time approximation the pion and sigma meson relaxation rates. We also find that in large momentum limit emission and absorption of massless pions result in threshold infrared divergence in sigma meson relaxation rate and lead to a crossover behavior in relaxation. We then study the relaxation of charged quasiparticles in scalar electrodynamics (SQED). While longitudinal, Debye screened photons lead to purely exponential relaxation, transverse photons, only dynamically screened by Landau damping lead to anomalous relaxation, thus leading to a crossover between two different relaxational regimes. We emphasize that infrared divergent damping rates are indicative of non-exponential relaxation and the dynamical renormalization group reveals the correct relaxation directly in real time. Finally we also show that this method provides a natural framework to interpret and resolve the issue of pinch singularities out of equilibrium and establish a direct correspondence between pinch singularities and secular terms. We argue that this method is particularly well suited to study quantum kinetics and transport in gauge theories.Comment: RevTeX, 40 pages, 4 eps figures, published versio
    corecore