1,979 research outputs found

    Monitoring Grassland Seasonal Carbon Dynamics, by Integrating MODIS NDVI, Proximal Optical Sampling, and Eddy Covariance Measurements

    Get PDF
    This study evaluated the seasonal productivity of a prairie grassland (Mattheis Ranch, in Alberta, Canada) using a combination of remote sensing, eddy covariance, and field sampling collected in 2012–2013. A primary objective was to evaluate different ways of parameterizing the light-use efficiency (LUE) model for assessing net ecosystem fluxes at two sites with contrasting productivity. Three variations on the NDVI (Normalized Difference Vegetation Index), differing by formula and footprint, were derived: (1) a narrow-band NDVI (NDVI680,800, derived from mobile field spectrometer readings); (2) a broad-band proxy NDVI (derived from an automated optical phenology station consisting of broad-band radiometers); and (3) a satellite NDVI (derived from MODIS AQUA and TERRA sensors). Harvested biomass, net CO2 flux, and NDVI values were compared to provide a basis for assessing seasonal ecosystem productivity and gap filling of tower flux data. All three NDVIs provided good estimates of dry green biomass and were able to clearly show seasonal changes in vegetation growth and senescence, confirming their utility as metrics of productivity. When relating fluxes and optical measurements, temporal aggregation periods were considered to determine the impact of aggregation on model accuracy. NDVI values from the different methods were also calibrated against fAPARgreen (the fraction of photosynthetically active radiation absorbed by green vegetation) values to parameterize the APARgreen (absorbed PAR) term of the LUE (light use efficiency) model for comparison with measured fluxes. While efficiency was assumed to be constant in the model, this analysis revealed hysteresis in the seasonal relationships between fluxes and optical measurements, suggesting a slight change in efficiency between the first and second half of the growing season. Consequently, the best results were obtained by splitting the data into two stages, a greening phase and a senescence phase, and applying separate fits to these two periods. By incorporating the dynamic irradiance regime, the model based on APARgreen rather than NDVI best captured the high variability of the fluxes and provided a more realistic depiction of missing fluxes. The strong correlations between these optical measurements and independently measured fluxes demonstrate the utility of integrating optical with flux measurements for gap filling, and provide a foundation for using remote sensing to extrapolate from the flux tower to larger regions (upscaling) for regional analysis of net carbon uptake by grassland ecosystems

    Interethnic differences in neuroimaging markers and cognition in Asians, a population-based study

    Get PDF
    We examined interethnic differences in the prevalence of neuroimaging markers of cerebrovascular and neurodegenerative disease in 3 major Asian ethnicities (Chinese, Malays, and Indians), as well as their role in cognitive impairment. 3T MRI brain scans were acquired from 792 subjects (mean age: 70.0 ± 6.5years, 52.1% women) in the multi-ethnic Epidemiology of Dementia In Singapore study. Markers of cerebrovascular disease and neurodegeneration were identified. Cognitive performance was evaluated using Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and a neuropsychological assessment. Compared to Chinese, Malays had a higher burden of intracranial stenosis (OR: 2.28. 95%CI: 1.23-4.20) and cortical atrophy (β: -0.60. 95%CI: -0.78, -0.41), while Indians had a higher burden of subcortical atrophy (β: -0.23. 95%CI: -0.40, -0.06). Moreover, Malay and Indian ethnicities were likely to be cognitively impaired (OR for Malays: 3.79. 95%CI: 2.29-6.26; OR for Indians: 2.87. 95%CI: 1.74-4.74) and showed worse performance in global cognition (β for Malays: -0.51. 95%CI: -0.66, -0.37; and Indians: -0.32. 95%CI: -0.47, -0.17). A higher burden of cerebrovascular and neurodegenerative markers were found in Malays and Indians when compared to Chinese. Further research is required to fully elucidate the factors and pathways that contribute to these observed differences

    Serum IL-8 is a marker of white-matter hyperintensities in patients with Alzheimer's disease

    Get PDF
    Introduction Neuroinflammation and cerebrovascular disease (CeVD) have been implicated in cognitive impairment and Alzheimer's disease (AD). The present study aimed to examine serum inflammatory markers in preclinical stages of dementia and in AD, as well as to investigate their associations with concomitant CeVD. Methods We performed a cross-sectional case–control study including 96 AD, 140 cognitively impaired no dementia (CIND), and 79 noncognitively impaired participants. All subjects underwent neuropsychological and neuroimaging assessments, as well as collection of blood samples for measurements of serum samples interleukin (IL)-6, IL-8, and tumor necrosis factor α levels. Subjects were classified as CIND or dementia based on clinical criteria. Significant CeVD, including white-matter hyperintensities (WMHs), lacunes, and cortical infarcts, was assessed by magnetic resonance imaging. Results After controlling for covariates, higher concentrations of IL-8, but not the other measured cytokines, were associated with both CIND and AD only in the presence of significant CeVD (CIND with CeVD: odds ratios [ORs] 4.53; 95% confidence interval [CI] 1.5–13.4 and AD with CeVD: OR 7.26; 95% CI 1.2–43.3). Subsequent multivariate analyses showed that among the types of CeVD assessed, only WMH was associated with higher IL-8 levels in CIND and AD (WMH: OR 2.81; 95% CI 1.4–5.6). Discussion Serum IL-8 may have clinical utility as a biomarker for WMH in AD. Longitudinal follow-up studies would help validate these findings

    Patient presentation and physician management of upper respiratory tract infections: A retrospective review of over 5 million primary clinic consultations in Hong Kong

    Get PDF
    Background: Upper respiratory tract infection (URTI) has a significant healthcare burden worldwide. Considerable resources are consumed through health care consultations and prescribed treatment, despite evidence for little or no effect on recovery. Patterns of consultations and care including use of symptomatic medications and antibiotics for upper respiratory tract infections are poorly described. Methods. We performed a retrospective review of computerized clinical data on patients presenting to all public primary care clinics in Hong Kong with symptoms of respiratory tract infections. International Classification of Primary care (ICPC)codes used to identify patients included otitis media (H71), streptococcal pharyngitis (R72), acute URTI (R74), acute sinusitis (R75), acute tonsillitis (R76), acute laryngitis (R77), and influenza (R80). Sociodemographic variables such as gender, age, chronic illness status, attendance date, type and duration of drug prescribed were also collected. Results: Of the 5,529,755 primary care consultations for respiratory symptoms from 2005 to 2010, 98% resulted in a prescription. Prescription patterns of symptomatic medication were largely similar across the 5 years. In 2010 the mean number of drugs prescribed per consultation was 3.2, of which the commonly prescribed medication were sedating antihistamines (79.9%), analgesia (58.9%), throat lozenges (40.4%) and expectorant cough syrup (33.8%). During the study period, there was an overall decline in antibiotic prescription (8.1% to 5.1%). However, in consultations where the given diagnosis was otitis media (H71), streptococcal pharyngitis (R72), acute sinusitis (R75) or acute laryngitis (R76), over 90% resulted in antibiotic prescription. Conclusion: There was a decline in overall antibiotic prescription over the study period. However, the use of antibiotics was high in some conditions e.g. otitis media and acute laryngitis a. Multiple symptomatic medications were given for upper respiratory tract infections. Further research is needed to develop clinical and patients directed interventions to reduce the number of prescriptions of symptomatic medications and antibiotics that could reduce costs for health care services and iatrogenic risk to patients. © 2014 Kung et al.; licensee BioMed Central Ltd.link_to_subscribed_fulltex

    S100A8 and S100A9 Are Associated with Doxorubicin-Induced Cardiotoxicity in the Heart of Diabetic Mice

    Get PDF
    © 2016 Pei, Tam, Sin, Wang, Yung, Chan, Wong, Ying, Lai and Siu. Cardiomyopathy is a clinical problem that occurs in the hearts of type 2 diabetic patients as well as cancer patients undergoing doxorubicin chemotherapy. The number of diabetic cancer patients is increasing but surprisingly the cardiac damaging effects of doxorubicin, a commonly used chemotherapeutic drug, on diabetic hearts have not been well-examined. As the signaling mechanisms of the doxorubicin-induced cardiomyopathy in type 2 diabetic heart are largely unknown, this study examined the molecular signaling pathways that are responsible for the doxorubicin-induced cardiotoxicity in type 2 diabetic hearts. Male 14- to 18-week-old db/db mice were used as the type 2 diabetic model, and age-matched non-diabetic db/+ mice served as controls. The db/+ non-diabetic and db/db diabetic mice were randomly assigned to the following groups: db/+CON, db/+DOX-5d, db/+DOX-7d, db/dbCON, db/dbDOX-5d, and db/dbDOX-7d. Mice assigned to doxorubicin (DOX) group were exposed to an intraperitoneal (i.p.) injection of DOX at a dose of 15 mg/kg to induce cardiomyopathy. Mice in control (CON) groups were i.p. injected with the same volume of saline instead of DOX. Mice were euthanized by overdose of ketamine and xylazine 5 or 7 days after the DOX injection. Microarray analysis was adopted to examine the changes of the whole transcriptional profile in response to doxorubicin exposure in diabetic hearts. Ventricular fractional shortening was examined as an indicator of cardiac function by transthoracic echocardiography. The presence of diabetic cardiomyopathy in db/db mice was evident by the reduction of fractional shortening. There was a further impairment of cardiac contractile function 7 days after the DOX administration in db/db diabetic mice. According to our microarray analysis, we identified a panel of regulatory genes associated with cardiac remodeling, inflammatory response, oxidative stress, and metabolism in the DOX-induced cardiac injury in diabetic heart. The microarray results of selected genes were confirmed by real time PCR. Notably, S100A8 and S100A9 were found to have a unique specific expression pattern that was coincident with the DOX-induced cardiomyopathy in diabetic hearts. Correspondingly, NF-κB expression in diabetic hearts was increased together with the elevation of S100A8/9 and activation of p38 MAPK signaling after DOX administration, which induced cardiac inflammation as demonstrated by the elevation of cardiac IL-6 level. These findings provide novel pre-clinical information for revealing the S100A8/A9-associated molecular signaling pathways that mediate the doxorubicin-induced cardiotoxicity in diabetic hearts.Link_to_subscribed_fulltex

    Evidence of the Generation of Isosaccharinic Acids and Their Subsequent Degradation by Local Microbial Consortia within Hyper-Alkaline Contaminated Soils, with Relevance to Intermediate Level Radioactive Waste Disposal

    Get PDF
    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration

    Intermolecular CT excitons enable nanosecond excited-state lifetimes in NIR-absorbing non-fullerene acceptors for efficient organic solar cells

    Full text link
    State-of-the-art Y6-type molecular acceptors exhibit nanosecond excited-state lifetimes despite their low optical gaps (~1.4 eV), thus allowing organic solar cells (OSCs) to achieve highly efficient charge generation with extended near-infrared (NIR) absorption range (up to ~1000 nm). However, the precise molecular-level mechanism that enables low-energy excited states in Y6-type acceptors to achieve nanosecond lifetimes has remained elusive. Here, we demonstrate that the distinct packing of Y6 molecules in film leads to a strong intermolecular charge-transfer (iCT) character of the lowest excited state in Y6 aggregates, which is absent in other low-gap acceptors such as ITIC. Due to strong electronic couplings between the adjacent Y6 molecules, the iCT-exciton energies are greatly reduced by up to ~0.25 eV with respect to excitons formed in separated molecules. Importantly, despite their low energies, the iCT excitons have reduced non-adiabatic electron-vibration couplings with the electronic ground state, thus suppressing non-radiative recombination and allowing Y6 to overcome the well-known energy gap law. Our results reveal the fundamental relationship between molecular packing and nanosecond excited-state lifetimes in NIR-absorbing Y6-type acceptors underlying the outstanding performance of Y6-based OSCs

    The Impact of Strategic White Matter Hyperintensity Lesion Location on Language

    Get PDF
    Objective: The impact of white matter hyperintensities (WMH) on language possibly depends on lesion location through disturbance of strategic white matter tracts. We examined the impact of WMH location on language in elderly Asians. Design: Cross-sectional. Setting: Population-based. Participants: Eight-hundred nineteen residents of Singapore, ages (≥65 years). Measurements: Clinical, cognitive and 3T magnetic resonance imaging assessments were performed on all participants. Language was assessed using the Modified Boston Naming Test (MBNT) and Verbal Fluency (VF). Hypothesis-free region-of-interest-based (ROI) analyses based on major white matter tracts were used to determine the association between WMH location and language. Conditional dependencies between the regional WMH volumes and language were examined using Bayesian-network analysis. Results: ROI-based analyses showed that WMH located within the anterior thalamic radiation (mean difference: −0.12, 95% confidence interval [CI]: −0.22; −0.02, p = 0.019) and uncinate fasciculus (mean difference: −0.09, 95% CI: −0.18; −0.01, p = 0.022) in the left hemisphere were significantly associated with worse VF but did not survive multiple testing. Conversely, WMH volume in the left cingulum of cingulate gyrus was significantly associated with MBNT performance (mean difference: −0.09, 95% CI: −0.17; −0.02, p = 0.016). Bayesian-network analyses confirmed the left cingulum of cingulate gyrus as a direct determinant of MBNT performance. Conclusion: Our findings identify the left cingulum of cingulate gyrus as a strategic white matter tract for MBNT, suggesting that language – is sensitive to subcortical ischemic damage. Future studies on the role of sporadic ischemic lesions and vascular cognitive impairment should not only focus on total WMH volume but should also take WMH lesion location into account when addressing language

    Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells

    Get PDF
    Funder: HKU | University Research Committee, University of Hong Kong (HKU Research Committee); doi: https://doi.org/10.13039/501100003802Abstract: Organic solar cells based on non-fullerene acceptors can show high charge generation yields despite near-zero donor–acceptor energy offsets to drive charge separation and overcome the mutual Coulomb attraction between electron and hole. Here, we use time-resolved optical spectroscopy to show that free charges in these systems are generated by thermally activated dissociation of interfacial charge-transfer states that occurs over hundreds of picoseconds at room temperature, three orders of magnitude slower than comparable fullerene-based systems. Upon free electron–hole encounters at later times, both charge-transfer states and emissive excitons are regenerated, thus setting up an equilibrium between excitons, charge-transfer states and free charges. Our results suggest that the formation of long-lived and disorder-free charge-transfer states in these systems enables them to operate closely to quasi-thermodynamic conditions with no requirement for energy offsets to drive interfacial charge separation and achieve suppressed non-radiative recombination
    corecore