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AB S TRA C T

Objective: The impact of white matter hyperintensities (WMH) on language pos-

sibly depends on lesion location through disturbance of strategic white matter

tracts. We examined the impact of WMH location on language in elderly Asians.

Design: Cross-sectional. Setting: Population-based. Participants: Eight-hundred

nineteen residents of Singapore, ages (≥65 years). Measurements: Clinical, cog-

nitive and 3T magnetic resonance imaging assessments were performed on all

participants. Language was assessed using the Modified Boston Naming Test

(MBNT) and Verbal Fluency (VF). Hypothesis-free region-of-interest-based (ROI)

analyses based on major white matter tracts were used to determine the associa-

tion between WMH location and language. Conditional dependencies between

the regional WMH volumes and language were examined using Bayesian-net-

work analysis. Results: ROI-based analyses showed that WMH located within the

anterior thalamic radiation (mean difference: �0.12, 95% confidence interval

[CI]: �0.22; �0.02, p = 0.019) and uncinate fasciculus (mean difference: �0.09,

95% CI: �0.18; �0.01, p = 0.022) in the left hemisphere were significantly associ-

ated with worse VF but did not survive multiple testing. Conversely, WMH vol-

ume in the left cingulum of cingulate gyrus was significantly associated with

MBNT performance (mean difference: �0.09, 95% CI: �0.17; �0.02, p = 0.016).

Bayesian-network analyses confirmed the left cingulum of cingulate gyrus as a

direct determinant of MBNT performance. Conclusion: Our findings identify the
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left cingulum of cingulate gyrus as a strategic white matter tract for MBNT, sug-

gesting that language − is sensitive to subcortical ischemic damage. Future stud-

ies on the role of sporadic ischemic lesions and vascular cognitive impairment

should not only focus on total WMH volume but should also take WMH lesion

location into account when addressing language. (Am J Geriatr Psychiatry 2020;
&&:&&−&&)
INTRODUCTION

N europsychological assessment plays a crucial
role in detecting loss of cognitive functions and

change in behavioral and functional state due to dis-
ruption in different neural networks and subnetworks
caused by vascular damage.1 Neuropsychological
tests include tasks assessing domains considered to
reflect “cortical function” for example, language and
visuoconstruction and tasks that tap into domains
that are especially sensitive to vascular damage in
subcortical regions such as attention and visuomotor
speed. Language in particular, has been suggested to
be controlled not only by cortical regions (Broca’s and
Wernicke’s area) but also the surrounding frontal cor-
tex, underlying white matter, the insula, basal gan-
glia, and parts of the anterior superior temporal
gyrus and inferior parietal lobe.2,3 This implies that
the deeper brain regions also participate in speech
production and language. However, unequivocal evi-
dence of how subcortical vascular injury disrupts lan-
guage in a population-based setting is lacking.

Previous studies have demonstrated that subcorti-
cal vascular brain damage as manifested by white
matter hyperintensities (WMH) located in the anterior
thalamic radiation and forceps minor were related to
worse performance in processing speed, executive
functioning, and memory.4−7 Such data is largely
restricted to diseased population that is, memory
clinic and patients diagnosed with cerebral autosomal
dominant arteriopathy with subcortical infarcts and
leukoencephalopathy (CADASIL). So far, only two
community-based studies have examined the effects
of white matter damage with language domain.8,9

One study consisting of a small sample (n = 220) has
shown that the lower white matter diffusivity in pos-
terior cingulum was associated with greater
impairment in the language domain8 whereas the
other study (n =»400) did not observe relationship
between WMH loadings in any of the strategic white
matter tracts and language performance.9 Thus, it is
possible that strategic location of WMH in specific
white matter tracts will have a more substantial
impact on language compared to lesions in the less
critical parts of the white matter, but this requires
more research.

Our objective is to investigate, to what extent lan-
guage is affected by subcortical ischemic injury as
manifested by WMH, and whether this depends on
specific white matter tracts using advanced and
robust statistical methods, including region of inter-
est-based analysis, and Bayesian network analysis in
a population-based setting. We hypothesize that stra-
tegic location of WMH is inversely associated with
language performance.

MATERIAL AND METHODS

Study Sample

The Epidemiology of Dementia In Singapore
(EDIS) is a subsample of the Singapore Epidemiology
of Eye Disease (SEED) study, a large population-
based study of three major ethnic cohorts: Chinese
(Singapore Chinese Eye Study [SCES]), Malay (Singa-
pore Malay Eye Study [SiMES-2]), and Indians (Singa-
pore Indian Eye Study [SINDI-2]).10 A similar
protocol was employed for recruitment and assess-
ment of study participants for all the three ethnicities.
As part of the first phase of the EDIS study, partici-
pants who were 60 years or older underwent cogni-
tive screening using the Abbreviated Mental Test
(AMT) and a self-report of progressive forgetfulness.
Screen positives were defined based on the educa-
tion-based cut-offs on AMT. A cut-off score of AMT
less than or equal to 6, was given to participants with
up to 6 years of formal education, or a score of less
than or equal to 8 among those with more than 6 years
of formal education; or if the caregiver confirmed pro-
gressive forgetfulness (PFQ).11,12 Subsequently, these
screen-positive persons (n = 1,598) were invited to
Am J Geriatr Psychiatry &&:&&, && 2020
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participate in the second phase of the EDIS study. All
the participants underwent an extensive clinical and
neuropsychological evaluation, along with 3T mag-
netic resonance imaging (MRI). Of the 1,598 partici-
pants, 957 eventually agreed to participate in phase-II
(overall response rate 60%) and hence were included
in the present study. Recruitment took place from
August 8, 2010 to July 24, 2015. The main exclusion
criteria were individuals who did not give consent to
participate in the second phase and those who were
screened negative on AMT and PFQ.

Individuals with no MRI images (n = 93), cortical
infarcts (n = 24), poor quality images (n = 10), and
dementia (n = 6) were excluded.

Ethics approval was obtained from the Singapore
Eye Research Institute, and National Healthcare
Group Domain-Specific Review Board (ID no: 2009/
00628). The study followed the tenets of Helsinki.
Written informed consent was taken prior to subjects’
recruitment into the study.
Neuroimaging

MRI was performed on a 3T Siemens Magnetom
Trio Tim scanner, using a 32-channel head coil, at the
Clinical Imaging Research Centre of the National Uni-
versity of Singapore. The standardized protocol
included 3D T1-weighted imaging (1.0£ 1.0£ 1.0
mm3 voxels, repetition time, TR = 2300 ms, time to
echo, TE = 1.9 ms, inversion time (TI), 900 ms, flip
angle 9o, matrix = 256£ 256£ 180 mm3), 2D multi-
slice T2-weighted (1.0£ 1.0£ 3.0 mm3 voxels,
TR = 3000 ms, TE = 10.1 ms, matrix = 247£ 256) and
2D multislice fluid-attenuated inversion recovery
(FLAIR) images (1.0£ 1.0£ 3.0 mm3; TR = 9000 ms;
TE = 82 ms; TI 2500 ms, matrix = 232£ 256). Lacunes
were graded on FLAIR and T2 sequences using the
STandards for ReportIng Vascular changes on nEuro-
imaging (STRIVE) criteria,13 and were defined as
lesions involving the subcortical regions, 3−15 mm in
diameter, with low signal on T1-weighted image and
FLAIR, a high signal on T2-weighted image, and a
hyperintense rim with a center following cerebrospi-
nal fluid intensity on FLAIR.
WMH Segmentation

WMH together with brain tissue volumes of the
whole brain were quantified by automatic segmentation
Am J Geriatr Psychiatry &&:&&, && 2020
using the FLAIR and T1 sequences as described previ-
ously.14 Briefly, a k-nearest-neighbor brain tissue
technique was used to classify voxels into cerebrospi-
nal fluid, gray matter, normal appearing white mat-
ter, and WMH, and volume (mL) was calculated from
these measurements. Default settings with k = 5 and
probability threshold of 0.7 were used for the WMH
segmentation in the present study. Results were visu-
ally checked and manually corrected for segmenta-
tion quality by the same grader (SH) who visually
graded lacunes.
Generation of Lesion Maps

Registration of T1 images to a 1-mm MNI-152
(Montreal Neurological Institute) template was per-
formed using RegLSM15,16 (https://metavcimap.
org/) with a linear registration followed by a nonlin-
ear registration. Visual checks of the results of the reg-
istration process were performed for all participants.
After quality control of T1 images in MNI space, the
warp fields were used to co-register the correspond-
ing WMH maps to the 1-mm MNI template.5 The
total WMH volume after registration to MNI space
was calculated for all participants. Five scans were
excluded due to failed WMH registration.
Language Assessment

Neuropsychological tests were administered in the
participant’s habitual language to avoid variance due
to insufficient language proficiency. Language was
assessed using the Modified Boston Naming Test
(MBNT)17 and Verbal Fluency (VF).18 MBNT con-
sisted of 15 line drawings of objects of graded diffi-
culty, ranging from very common objects (e.g., a tree)
to less familiar objects such as an abacus. Score was
given for every spontaneous correct response within
20 seconds. VF consisted of naming items within a
particular category such as fruits and animals in a
given time (60 seconds).19 Both tests were adminis-
tered to every participant and were scored separately.

For each participant, raw scores of each test for lan-
guage was first transformed to standardized Z-scores
using the mean and standard deviation (SD) of that
test in this study. Subsequently, for each participant a
mean Z-score for language was calculated by averag-
ing the Z-scores of the two individual tests.
3
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Statistical Analyses

The association between three ethnicities and lan-
guage performance was determined using linear
regression models adjusting for age, sex, and educa-
tion. In order to identify strategic white matter tracts
in which WMHs are associated with cognitive func-
tion, we performed the following hypothesis − free
analyses: Region of interest (ROI)-based analyses
based on the association between WMH volumes
within specific white matter tracts and language per-
formance and, Bayesian network analysis between
language domain and regional volume of WMH for
each white matter tract.
ROI-Based Analyses

For the ROI-based analyses, 10 regions of interest
were created using a probabilistic white matter tract
atlas with a probability threshold of 10%.20 As there
were very few WMH voxels in parahippocampal
white matter, this tract was removed from further
analysis leaving nine white matter tracts for ROI-
based analyses. The regional WMH volumes within
these 10 white matter tracts were entered as indepen-
dent variables in a linear regression model, with the
z-scores of language domain, VF and MBNT as out-
comes, adjusting for age, sex, spoken language (Man-
darin, Malay, or Tamil), education and presence of
lacunes as covariates. The models were further
adjusted for total normalized WMH volume (i.e.,
WMH volume after registration to the MNI-152 tem-
plate) to determine the independent effects of strate-
gic WMH on language. Correction for multiple
comparisons (within 18 white matter tracts including
left and right and three outcomes) was performed
using the Bonferroni method with a significance level
set at 0.05/18*3»0.00093.
Bayesian Network Analysis

We analyzed Bayesian networks of conditional
dependencies between language Z scores, VF, MBNT,
age, sex, education, and regional WMH volumes for
each white matter tract on left and right to reveal
the major determinants for language domain
impairment. Gaussian linear Bayesian network analy-
sis for continuous data was applied using the
4

Learning Bayesian Networks. The network structure
was learned using a Semi-Interleaved Hiton Parents
and Children (SI-HITON-PC) constraint-based algo-
rithm, with a nonparametric conditional indepen-
dence test based on mutual information (i.e.,
sequential Monte Carlo permutation test; 500 permu-
tations; alpha = 0.05). This analysis was done with the
bnlearn package (version 4.4) within the R software
package (version 3.5.1).21 The applied algorithm in
the Bayesian network analysis (a constraint-based
learning algorithm) requires no multiple testing
adjustment, because these algorithms are largely self-
adjusting in that respect.22 The analyses were carried
out without prespecified directionality with the fol-
lowing two exceptions: for biologically relevant struc-
ture-function dependencies where WMH impacted
language and not vice versa, language was used as
the dependent variable and WMH volume as an inde-
pendent variable. Similarly, age, sex, and education
were used as independent variables. The robustness
of the final strategic network to sampling variability
was confirmed using a bootstrapping approach and
the strength of each arc was calculated as a relative
frequency of the arc appearance in 1,000 networks
obtained through resampling. Bootstrap replications
were performed to investigate the robustness of the
observed relationships between WMH volumes in
white matter tracts and cognitive performance and
expressed as the relative frequency in which the arcs
(i.e., the connections between the variables) appeared
in the reconstructed network. Good confidence was
indicated by an arc frequency of 50% and higher in
accordance with previous applications of this method
in the literature.23 The level of significance was set to
5% and all tests were two-sided.

RESULTS

Characteristics of the study population are shown
in Table 1. The mean age of the participants was
70.2 years and 54% were women. The median WMH
was 2.33 mL and the prevalence of lacunes in this
sample was 17%. Chinese performed better on lan-
guage domain and MBNT whereas Malay and Indian
had lower scores on language domain and MBNT
(Table 2); no differences in VF performance were
found among the three ethnicities.
Am J Geriatr Psychiatry &&:&&, && 2020



TABLE 1. Characteristics of the Study Sample

Demographics Characteristics Study Sample (n = 819)

Age, mean (SD) 70.2 (6.6)
Women, no. (%) 442 (54)
Education (years), mean (SD) 5.9 (4.54)
Right handedness, no. (%) 814 (99)
Vascular risk factors

Hypertension, no. (%) 657 (80.2)
Hyperlipidemia, no. (%) 614 (75)
Diabetes, no. (%) 306 (37.4)
Smoking, no. (%) 211 (25.8)
MRI markers

Lacunes, no (%) 139 (17)
White matter hyperintensities volume,
mL, median (IQR)

2.33 (0-61.8)

Microbleeds, no. (%) 278 (34.5)
Language tests

Modified Boston Naming Test, mean (SD) 13.20 (1.69)
Animal naming, mean (SD) 12.87 (3.90)
Food naming, mean (SD) 14.28 (4.26)

Bold values represent p <0.05.
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ROI-Based Analyses

Total WMH volume was significantly associated
with worse performance on language (mean difference
in z-scores per SD increase in WMH volume: �0.14,
95% CI: �0.19; �0.07, p <0.001, degrees of freedom
(df): 1, F statistic: 15.9) as well as VF (mean difference
in z-scores per SD increase in WMH volume: �0.13,
�0.19; �0.06, p <0.001, df: 1, F statistic: 14.4) and
MBNT (mean difference in z-scores per SD increase in
WMH volume: �0.08, 95%CI: �0.15; �0.02, p <0.001,
df: 1, F statistic: 5.77). Table 3 shows the association
between strategic white matter tracts in which WMH
volume were associated with language domain and its
specific subtests. Upon adjusting for age, sex, spoken
language, education, presence of lacunes and total
WMH volume, WMH in left anterior thalamic tract,
and uncinatefasiculus were significantly associated
with worse performance on VF whilst the left cingu-
lum of cingulate gyrus was associated with the MBNT
(Table 3). After applying Bonferroni correction to the
WMH-corrected models, none of the associations
reached revised statistical significance. These associa-
tions did not differ when the analysis was stratified by
language spoken among the participants (Table 4).
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To account for the multicollinearities and interac-
tions between variables in the previous step on linear
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TABLE 3. Association Between White Matter HyperintensitiesVolume Within 10 White Matter Tracts Separate for Left and Right
Hemisphere With Language and Its Specific Tests (Verbal Fluency and Modified Boston Naming Test)

White Matter Tracts
Language Verbal Fluency Modified Boston Naming Test

b (95% CI)a, p Value b (95% CI)a, p Value b (95% CI)a, p Value

Anterior thalamic radiation, Left �0.06 (�0.16; 0.04),
F = 1.45, p = 0.229

�0.12 (�0.22; �0.02),
F = 5.53, p = 0.019

0.07 (�0.03; 0.17),
F = 1.93, p = 0.166

Anterior thalamic radiation, Right 0.05 (�0.05; 0.14),
F = 0.78, p = 0.354

0.02 (�0.08; 0.12),
F = 0.09, p = 0.743

0.08 (�0.02; 0.17),
F = 2.15, p = 0.126

Corticospinal tract, Left 0.00 (�0.07; 0.08),
F = 0.00, p = 0.934

0.02 (�0.06; 0.09),
F = 0.27, p = 0.596

�0.03 (�0.10; 0.05),
F = 0.63, p = 0.458

Corticospinal tract, Right 0.07 (�0.01; 0.15),
F = 2.69, p = 0.103

0.08 (�0.00; 0.17),
F = 3.51, p = 0.062

0.02 (�0.07; 0.10),
F = 0.19, p = 0.676

Cingulum of cingulate gyrus, Left �0.07 (�0.14; 0.01),
F = 3.19, p = 0.067

�0.04 (�0.11; 0.04),
F = 0.95, p = 0.321

�0.09 (�0.17; �0.02),
F = 5.51, p = 0.016

Cingulum of cingulate gyrus, Right �0.05 (�0.11; 0.01),
F = 2.21, p = 0.115

�0.03 (�0.09; 0.03),
F = 1.07, p = 0.286

�0.05 (�0.11; 0.01),
F = 2.42, p= 0.090

Inferior fronto-occipital fasciculus, Left �0.03 (�0.12; 0.07),
F = 0.26, p = 0.593

�0.12 (�0.33; 0.10),
F = 1.11, p = 0.299

0.03 (�0.07; 0.13),
F = 0.49, p = 0.510

Inferior fronto-occipital fasciculus, Right �0.01 (�0.14; 0.12),
F = 0.00, p = 0.877

0.00 (�0.22; 0.22),
F = 0.00, p 0 .985

�0.03 (�0.16; 0.10),
F = 0.05, p = 0.692

Inferior longitudinal fasciculus, Left 0.02 (�0.06; 0.10),
F = 0.22, p = 0.649

0.04 (�0.04; 0.13),
F = 0.95, p = 0.331

�0.03 (�0.11; 0.06),
F = 0.44, p = 0.501

Inferior longitudinal fasciculus, Right �0.00 (�0.07; 0.07),
F = 0.00, p = 0.952

0.02 (�0.06; 0.09),
F = 0.19, p = 0.681

�0.03 (�0.48; 0.19),
F = 0.53, p = 0.389

Uncinate fasciculus, Left �0.03 (�0.11; 0.04),
F = 0.72, p = 0.390

�0.09 (�0.18; �0.01),
F = 5.24, p = 0.022

0.08 (�0.00; 0.17),
F = 4.37, p = 0.051

Uncinate fasciculus, Right 0.04 (�0.04; 0.12),
F = 0.89, p = 0.359

0.03 (�0.06; 0.11),
F = 0.47, p = 0.500

0.04 (�0.05; 0.12),
F = 0.89, p = 0.370

Superior longitudinal fasciculus, Left 0.05 (�0.03; 0.14),
F = 1.76, p = 0.231

0.07 (�0.02; 0.16),
F = 2.38, p = 0.116

0.02 (�0.07; 0.11),
F = 0.09, p = 0.662

Superior longitudinal fasciculus, Right 0.05 (�0.04; 0.13),
F = 1.98, p = 0.265

0.05 (�0.05; 0.15),
F = 1.05, p=0.293

0.08 (�0.02; 0.17),
F = 1.96, p = 0.128

Temporal part of superior longitudinal fasciculus, Left 0.05 (�0.03; 0.14),
F = 1.28, p = 0.243

0.07 (�0.02; 0.16),
F = 2.60, p = 0.102

�0.01 (�0.09; 0.08),
F = 0.07, p = 0.879

Temporal part of superior longitudinal fasciculus, Right 0.19 (�0.04; 0.13),
F = 1.18, p = 0.333

0.02 (�0.07; 0.11),
F = 0.24, p = 0.615

0.07 (�0.01; 0.16),
F = 2.56, p = 0.100

Forceps major 0.02 (�0.06; 0.11),
F = 0.42, p = 0.552

0.03 (�0.05; 0.18),
F = 0.64, p = 0.436

�0.00 (�0.08; 0.08),
F = 0.00, p = 0.985

Forceps minor �0.05 (�0.13; 0.04),
F = 1.18, p = 0.255

�0.07 (�0.16; 0.02),
F = 2.43, p = 0.115

0.01 (�0.08; 0.09),
F = 0.08, p = 0.851

Bold values represent p <0.05.
a All models adjusted for age, sex, spoken language, education, lacunes and total white matter hyperintensities volume. p Values reported are

not Bonferroni corrected. For the F test, the degrees of freedom (df) is 1.
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regression, we performed Bayesian network analyses
to identify a strategic network of major white matter
tracts relevant for language and its subtests taking
into account age and sex. We found that the left cin-
gulum of the cingulate gyrus was directly linked with
the MBNT (Fig. 1). A detailed network analysis of left
cingulum and other white matter tracts with MBNT
are shown in supplemental digital content 1. The
strength of the arc between the left cingulum of the
cingulate gyrus and the MBNT obtained by boot-
strapping was 51% reflecting a good confidence inter-
val. No direct connections between WMH in specific
tracts and verbal fluency or the composite language
domain were found.
6

DISCUSSION

This study identified strategic white matter tracts
in which WMH are associated with worse perfor-
mance in language in a population-based setting.
More specifically, the left cingulum of the cingulate
gyrus was identified as a strategic white matter tract
for the MBNT. This suggests that the language is sen-
sitive to ischemic damage in a larger subcortical net-
work than was previously thought.

Previous studies have shown that the total WMH
volume only explains a limited proportion of interin-
dividual variability in cognitive functioning and that
Am J Geriatr Psychiatry &&:&&, && 2020
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location of WMHmight be more relevant to study the
effects of WMH on cognition.6 This has been reported
in studies on CADASIL patients,4,23 clinically mani-
fest arterial disease,5 memory clinic patients,6 and
community-based cohorts.24,25 However, these stud-
ies have been largely focused on vascular cognitive
impairment domains which include impairment in
executive function, processing speed and memory
whereas the effects of WMH on language has been
less studied. Earlier lesion studies have suggested
that the language deficits extend beyond the tradi-
tional cortical areas such as Broca’s area and involve
surrounding frontal cortex, white matter, insula, and
basal ganglia.26−28 Interestingly, an MR study involv-
ing imaging of Broca’s aphasic patients showed that
the actual surface lesion (Broca’s area) which was
attributed to all aspects of speech deficits in these
patients, extended significantly into the medial loca-
tion of the brain involving subcortical white matter
and deep gray nuclei.2

A more recent study only reported an association
between gray matter atrophy with language
impairment but did not find a link with WMH vol-
umes.9 As such, our study adds further to the previous
findings by reporting an association between the stra-
tegic location of WMH in white matter tracts and lan-
guage subtasks suggesting that strategic ischemic
lesions within white matter tracts are better predictors
of language impairment than total lesion volume.
Interestingly, regional WMH volume in left cingulum
was associated with the MBNT, thus reflecting that dif-
ferent language subtasks maybe impaired by different
strategic white matter tracts. This was also corrobo-
rated in earlier literature where relationship between
location and extent of ischemic lesion was examined
using CT scan in cases with verbal stereotypes and
nonfluent Broca’s aphasia. It was suggested that the
extent of the lesion involved medial subcallosal fascic-
ulus which contained projections from the cingulate
gyrus and supplementary motor area to caudate
nucleus, was extensive enough to interrupt a large
number of white matter connections.29 Interestingly,
the language spoken by the participants did not affect
performance on language tasks suggesting that these
associations are least affected by spoken languages.

Moreover, Bayesian network analysis identified
the left cingulum as a relevant structure contributing
to worse performance on language. Limited data sup-
port the role of the cingulum in executive function
7



FIGURE 1. Bayesian network analysis for strategic white matter hyperintensities with Modified Boston Naming Test. The left cingu-
lum of the cingulate gyrus, age, sex, and education has a direct connection to the Modified Boston Naming Test. Bold black arrows
indicate confidence level above 50% and numbers indicate the confidence level of the arcs as determined by 1,000 bootstrap
replications.
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and processing speed but less so for language.30 One
study involving diffusion tensor imaging employed
an ROI approach to study the contribution of anterior
and posterior cingulum fractional anisotropy and
mean diffusivity to attention/executive function, lan-
guage, memory, and visuo-spatial function in a group
of 220 cognitive healthy older adults. They found that
fractional anisotropy differences in the anterior cingu-
lum correlate with differences in attention/executive
and memory performance, while fractional anisot-
ropy in the posterior dorsal cingulum appeared to
contribute to all four cognitive domains.8,31 Thus, our
data extends knowledge by demonstrating a strategic
role of WMH within the cingulum with the MBNT.
Our findings strengthen the concept that the cingulate
circuits play an important role in vascular cognitive
impairment-related subcortical ischemic lesions.

Interestingly, the cingulum network identified by
Bayesian analysis primarily involved the left hemi-
sphere which is in line with the previous studies
where white matter integrity in relation to cognition
showed predominance in the left hemisphere.23 Even
though, there was no specific asymmetry of WMH
distribution in the included sample, the verbal and
naming tasks are predominantly controlled by the left
hemisphere.23 The lack of association between lesions
in longitudinal tracts and language might be due to a
relatively low WMH burden in these tracts. This may
explain why the total burden of WMH explained only
a small proportion of variance in cognition.
8

Limitations of the present study include first, par-
ticipants were recruited based on cognitive screening,
meaning the study population is enriched with per-
sons with cognitive impairment. This enrichment
increases the statistical power for detecting associa-
tions between WMH lesions and cognition but may
limit the generalizability to a community-based set-
ting. Second, the cross-sectional design of the present
study limits the temporal relationship between WMH
volume and cognition. Third, there might be an over-
lap between the tests of language and processing
speed as well as executive functioning. Fourth, we
did not consider microstructural changes in the white
matter tracts, which may influence our results. Fifth,
the Bayesian network analysis showed association
between WMH in cingulum and the MBNT which
was not corroborated in linear regression analysis
after applying multiple testing correction, thus pro-
viding less strong evidence for such association.
Finally, even though ROI-based analysis showed
between WMH in the left cingulum and the MBNT,
and the left anterior thalamic radiation and uncinate
fasciculus and VF, these associations did not survive
testing. Moreover, as the size of these standardized
coefficients are small, they may lack clinical meaning
but remain of possible theoretical interest. Strengths
of the study include a large population-based setting,
usage of Bayesian network analysis, which deals well
with multicollinearity providing intuitive representa-
tion of the complex relationships. Confidence in the
Am J Geriatr Psychiatry &&:&&, && 2020
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involvement of the cingulum network was further
confirmed by bootstrapping the white matter net-
works in Bayesian analysis.

CONCLUSION

This study demonstrated an association between
WMH in the left cingulum and the MBNT. Our find-
ings support the concept that WMH located in these
strategic white matter tracts specifically left cingulum
disrupt language and suggest that the subcortical net-
work involved in language production is larger than
was previously thought. Future studies on the role of
sporadic ischemic lesions and vascular cognitive
impairment should not only focus on total WMH vol-
ume but should also take WMH lesion location into
account when addressing language. Longitudinal
studies are needed to determine whether WMH vol-
umes in strategic white matter tracts predict future
(domain-specific) cognitive decline.
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