1,724 research outputs found
Micro-CT Imaging Reveals Mekk3 Heterozygosity Prevents Cerebral Cavernous Malformations in Ccm2-Deficient Mice.
Mutations in CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation in humans. Mouse models of CCM disease have been established by deleting Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. However, the full value of these animal models is limited by the lack of an accurate and quantitative method to assess lesion burden and progression. In the present study we have established a refined and detailed contrast enhanced X-ray micro-CT method to measure CCM lesion burden in mouse brains. As this study utilized a voxel dimension of 9.5μm (leading to a minimum feature size of approximately 25μm), it is therefore sufficient to measure CCM lesion volume and number globally and accurately, and provide high-resolution 3-D mapping of CCM lesions in mouse brains. Using this method, we found loss of Ccm1 or Ccm2 in neonatal endothelium confers CCM lesions in the mouse hindbrain with similar total volume and number. This quantitative approach also demonstrated a rescue of CCM lesions with simultaneous deletion of one allele of Mekk3. This method would enhance the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases
Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis
Introduction
Basal-like breast cancer (BLBC) is an aggressive subtype often characterized by distant metastasis, poor patient prognosis, and limited treatment options. Therefore, the discovery of alternative targets to restrain its metastatic potential is urgently needed. In this study, we aimed to identify novel genes that drive metastasis of BLBC and to elucidate the underlying mechanisms of action. Methods
An unbiased approach using gene expression profiling of a BLBC progression model and in silicoleveraging of pre-existing tumor transcriptomes were used to uncover metastasis-promoting genes. Lentiviral-mediated knockdown of interleukin-13 receptor alpha 2 (IL13Ralpha2) coupled with whole-body in vivo bioluminescence imaging was performed to assess its role in regulating breast cancer tumor growth and lung metastasis. Gene expression microarray analysis was followed by in vitro validation and cell migration assays to elucidate the downstream molecular pathways involved in this process. Results
We found that overexpression of the decoy receptor IL13Ralpha2 is significantly enriched in basal compared with luminal primary breast tumors as well as in a subset of metastatic basal-B breast cancer cells. Importantly, breast cancer patients with high-grade tumors and increased IL13Ralpha2 levels had significantly worse prognosis for metastasis-free survival compared with patients with low expression. Depletion of IL13Ralpha2 in metastatic breast cancer cells modestly delayed primary tumor growth but dramatically suppressed lung metastasis in vivo. Furthermore, IL13Ralpha2 silencing was associated with enhanced IL-13-mediated phosphorylation of signal transducer and activator of transcription 6 (STAT6) and impaired migratory ability of metastatic breast cancer cells. Interestingly, genome-wide transcriptional analysis revealed that IL13Ralpha2 knockdown and IL-13 treatment cooperatively upregulated the metastasis suppressor tumor protein 63 (TP63) in a STAT6-dependent manner. These observations are consistent with increased metastasis-free survival of breast cancer patients with high levels of TP63 and STAT6 expression and suggest that the STAT6-TP63 pathway could be involved in impairing metastatic dissemination of breast cancer cells to the lungs. Conclusion
Our findings indicate that IL13Ralpha2 could be used as a promising biomarker to predict patient outcome and provide a rationale for assessing the efficacy of anti-IL13Ralpha2 therapies in a subset of highly aggressive basal-like breast tumors as a strategy to prevent metastatic disease
Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults
Citation: Wong, C. N., Chaddock-Heyman, L., Voss, M. W., Burzynska, A. Z., Basak, C., Erickson, K. I., . . . Kramer, A. F. (2015). Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Frontiers in Aging Neuroscience, 7, 10. doi:10.3389/fnagi.2015.00154Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59-80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function
Novel venom gene discovery in the platypus
Background: To date, few peptides in the complex mixture of platypus venom have been identified and sequenced, in part due to the limited amounts of platypus venom available to study. We have constructed and sequenced a cDNA library from an active platypus venom gland to identify the remaining components.Results: We identified 83 novel putative platypus venom genes from 13 toxin families, which are homologous to known toxins from a wide range of vertebrates (fish, reptiles, insectivores) and invertebrates (spiders, sea anemones, starfish). A number of these are expressed in tissues other than the venom gland, and at least three of these families (those with homology to toxins from distant invertebrates) may play non-toxin roles. Thus, further functional testing is required to confirm venom activity. However, the presence of similar putative toxins in such widely divergent species provides further evidence for the hypothesis that there are certain protein families that are selected preferentially during evolution to become venom peptides. We have also used homology with known proteins to speculate on the contributions of each venom component to the symptoms of platypus envenomation.Conclusions: This study represents a step towards fully characterizing the first mammal venom transcriptome. We have found similarities between putative platypus toxins and those of a number of unrelated species, providing insight into the evolution of mammalian venom
Decrease of resistance to air flow with nasal strips as measured with the airflow perturbation device
BACKGROUND: Nasal strips are used by athletes, people who snore, and asthmatics to ease the burden of breathing. Although there are some published studies that demonstrate higher flow with nasal strips, none had directly measured the effect of the strips on nasal resistance using the airflow perturbation device (APD). The APD is an inexpensive instrument that can measure respiratory resistance based on changes in mouth pressure and rate of airflow. METHOD: This study tested forty-seven volunteers (14 men and 33 women), ranging in age from 17 to 51. Each volunteer was instructed to breathe normally into the APD using an oronasal mask with and without nasal strips. The APD measured respiratory resistance during inhalation, exhalation, and an average of the two. RESULTS: Results of a paired mean t-test comparing nasal strip against no nasal strip were statistically significant at the p = 0.05 level. The Breathe Rightâ„¢ nasal dilator strips lowered nasal resistance by an average of 0.5 cm H(2)0/Lps from an average nasal resistance of 5.5 cm H(2)0/Lps. CONCLUSIONS: Nasal strips reduce nasal resistance when measured with the APD. The effect is equal during exhalation and during inhalation
Failures of nerve regeneration caused by aging or chronic denervation are rescued by restoring Schwann cell c-Jun.
After nerve injury, myelin and Remak Schwann cells reprogram to repair cells specialized for regeneration. Normally providing strong regenerative support, these cells fail in aging animals, and during chronic denervation that results from slow axon growth. This impairs axonal regeneration and causes significant clinical problems. In mice, we find that repair cells express reduced c-Jun protein as regenerative support provided by these cells declines during aging and chronic denervation. In both cases, genetically restoring Schwann cell c-Jun levels restores regeneration to control levels. We identify potential gene candidates mediating this effect and implicate Shh in the control of Schwann cell c-Jun levels. This establishes that a common mechanism, reduced c-Jun in Schwann cells, regulates success and failure of nerve repair both during aging and chronic denervation. This provides a molecular framework for addressing important clinical problems, suggesting molecular pathways that can be targeted to promote repair in the PNS
Language and learning science in South Africa
South Africa is a multilingual country with 11 official languages. However, English dominates as the language of access and power and although the Language-in- Education Policy (1997) recommends school language policies that will promote additive bilingualism and the use of learners' home languages as languages of learning and teaching, there has been little implementation of these recommendations by schools. This is despite the fact that the majority of learners do not have the necessary English language proficiency to successfully engage with the curriculum and that teachers frequently are obliged to resort to using the learners' home language to mediate understanding. This research investigates the classroom language practices of six Grade 8 science teachers, teaching science through the medium of English where they and their learners share a common home language, Xhosa. Teachers' lessons were videotaped, transcribed and analysed for the opportunities they offered learners for language development and conceptual challenge. The purpose of the research is to better understand the teachers' perceptions and problems and to be able to draw on examples of good practice, to inform teacher training and to develop a coherent bilingual approach for teaching science through the medium of English as an additional language
Recommended from our members
‘Caution! The Bread is Poisoned’: The Hong Kong Mass Poisoning of January 1857
This article examines the Hong Kong mass poisoning of 15 January 1857, in which bread from a Chinese bakery that supplied the colonial community was adulterated with arsenic. Even though there is a wealth of printed and manuscript documentation available many vital aspects of the poisoning remain unclear. What kind of incident was it: an act of terrorism and attempted mass murder, a war crime, a criminal conspiracy, an act of commercial sabotage, an accident or even an imagined or imaginary event? Throughout, our focus remains firmly fixed on the central act of the poisoning itself and on what it reveals about the precarious nature of early colonial Hong Kong. Interpretations have swarmed over the available ‘facts'. Equally ironic is what happened to the afterlife of how the event was understood. This article seeks to rescue the Hong Kong poisoning from being a freakish and isolated footnote of only local interest. Accepting this historical verdict would be a mistake as it is of significance not only at a local level, but geopolitically in Britain and across the empire
An IL1RL1 genetic variant lowers soluble ST2 levels and the risk effects of APOE-ε4 in female patients with Alzheimer’s disease
Changes in the levels of circulating proteins are associated with Alzheimer’s disease (AD), whereas their pathogenic roles in AD are unclear. Here, we identified soluble ST2 (sST2), a decoy receptor of interleukin-33–ST2 signaling, as a new disease-causing factor in AD. Increased circulating sST2 level is associated with more severe pathological changes in female individuals with AD. Genome-wide association analysis and CRISPR–Cas9 genome editing identified rs1921622, a genetic variant in an enhancer element of IL1RL1, which downregulates gene and protein levels of sST2. Mendelian randomization analysis using genetic variants, including rs1921622, demonstrated that decreased sST2 levels lower AD risk and related endophenotypes in females carrying the Apolipoprotein E (APOE)-ε4 genotype; the association is stronger in Chinese than in European-descent populations. Human and mouse transcriptome and immunohistochemical studies showed that rs1921622/sST2 regulates amyloid-beta (Aβ) pathology through the modulation of microglial activation and Aβ clearance. These findings demonstrate how sST2 level is modulated by a genetic variation and plays a disease-causing role in females with AD
- …