4,066 research outputs found
Can resources save rationality? ‘Anti-Bayesian’ updating in cognition and perception
Resource rationality may explain suboptimal patterns of reasoning; but what of “anti-Bayesian”
effects where the mind updates in a direction opposite the one it should? We present two
phenomena — belief polarization and the size-weight illusion — that are not obviously
explained by performance- or resource-based constraints, nor by the authors’ brief discussion
of reference repulsion. Can resource rationality accommodate them
Triggerable multivalent glyconanoparticles for probing carbohydrate–carbohydrate interactions
Carbohydrate–carbohydrate interactions are proposed to be biologically significant but have lower affinities than the well-studied carbohydrate–protein interactions. Here we introduce multivalent glyconanostructures where the surface expression of lactose can be triggered by an external stimulus, and a gold nanoparticle core enables colorimetric signal outputs to probe binding. Macromolecular engineering of a responsive polymer “gate” enables the lactose moieties to be presented only when an external stimulus is present, mimicking how nature uses enzymes to dynamically regulate glycan expression. Two different carbohydrate–carbohydrate interactions are investigated using this tool
Recommended from our members
Combining Gene Expression Data from Different Generations of Oligonucleotide Arrays
Background: One of the important challenges in microarray analysis is to take full advantage of previously accumulated data, both from one's own laboratory and from public repositories. Through a comparative analysis on a variety of datasets, a more comprehensive view of the underlying mechanism or structure can be obtained. However, as we discover in this work, continual changes in genomic sequence annotations and probe design criteria make it difficult to compare gene expression data even from different generations of the same microarray platform. Results: We first describe the extent of discordance between the results derived from two generations of Affymetrix oligonucleotide arrays, as revealed in cluster analysis and in identification of differentially expressed genes. We then propose a method for increasing comparability. The dataset we use consists of a set of 14 human muscle biopsy samples from patients with inflammatory myopathies that were hybridized on both HG-U95Av2 and HG-U133A human arrays. We find that the use of the probe set matching table for comparative analysis provided by Affymetrix produces better results than matching by UniGene or LocusLink identifiers but still remains inadequate. Rescaling of expression values for each gene across samples and data filtering by expression values enhance comparability but only for few specific analyses. As a generic method for improving comparability, we select a subset of probes with overlapping sequence segments in the two array types and recalculate expression values based only on the selected probes. We show that this filtering of probes significantly improves the comparability while retaining a sufficient number of probe sets for further analysis. Conclusions: Compatibility between high-density oligonucleotide arrays is significantly affected by probe-level sequence information. With a careful filtering of the probes based on their sequence overlaps, data from different generations of microarrays can be combined more effectively
A microRNA cluster in the Fragile-X region expressed during spermatogenesis targets FMR1.
Testis-expressed X-linked genes typically evolve rapidly. Here, we report on a testis-expressed X-linked microRNA (miRNA) cluster that despite rapid alterations in sequence has retained its position in the Fragile-X region of the X chromosome in placental mammals. Surprisingly, the miRNAs encoded by this cluster (Fx-mir) have a predilection for targeting the immediately adjacent gene, Fmr1, an unexpected finding given that miRNAs usually act in trans, not in cis Robust repression of Fmr1 is conferred by combinations of Fx-mir miRNAs induced in Sertoli cells (SCs) during postnatal development when they terminate proliferation. Physiological significance is suggested by the finding that FMRP, the protein product of Fmr1, is downregulated when Fx-mir miRNAs are induced, and that FMRP loss causes SC hyperproliferation and spermatogenic defects. Fx-mir miRNAs not only regulate the expression of FMRP, but also regulate the expression of eIF4E and CYFIP1, which together with FMRP form a translational regulatory complex. Our results support a model in which Fx-mir family members act cooperatively to regulate the translation of batteries of mRNAs in a developmentally regulated manner in SCs
Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor
We have explored a new mechanism for switching magnetism and
superconductivity in a magnetically frustrated iron-based superconductor using
spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single
crystal SrVOFeAs shows that a spin-polarized tunneling current can
switch the Fe-layer magnetism into a non-trivial (22) order, not
achievable by thermal excitation with unpolarized current. Our tunneling
spectroscopy study shows that the induced (22) order has
characteristics of plaquette antiferromagnetic order in Fe layer and strongly
suppressed superconductivity. Also, thermal agitation beyond the bulk Fe spin
ordering temperature erases the state. These results suggest a new
possibility of switching local superconductivity by changing the symmetry of
magnetic order with spin-polarized and unpolarized tunneling currents in
iron-based superconductors.Comment: 33 pages, 16 figure
Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential
Autophagy is a conserved homeostatic process active in all human cells and affecting a spectrum of diseases. Here we use a pharmaceutical screen to discover new mechanisms for activation of autophagy. We identify a subset of pharmaceuticals inducing autophagic flux with effects in diverse cellular systems modelling specific stages of several human diseases such as HIV transmission and hyperphosphorylated tau accumulation in Alzheimer’s disease. One drug, flubendazole, is a potent inducer of autophagy initiation and flux by affecting acetylated and dynamic microtubules in a reciprocal way. Disruption of dynamic microtubules by flubendazole results in mTOR deactivation and dissociation from lysosomes leading to TFEB (transcription factor EB) nuclear translocation and activation of autophagy. By inducing microtubule acetylation, flubendazole activates JNK1 leading to Bcl-2 phosphorylation, causing release of Beclin1 from Bcl-2-Beclin1 complexes for autophagy induction, thus uncovering a new approach to inducing autophagic flux that may be applicable in disease treatment
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
- …
