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Abstract 

We have explored a new mechanism for switching magnetism and superconductivity in a 

magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling 

microscopy (SPSTM). Our SPSTM study on single crystal Sr2VO3FeAs shows that a spin-

polarized tunneling current can switch the Fe-layer magnetism into a non-trivial C4 (2×2) order, 

which cannot be achieved by thermal excitation with unpolarized current. Our tunneling 

spectroscopy study shows that the induced C4 (2×2) order has characteristics of plaquette 

antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, 

thermal agitation beyond the bulk Fe spin ordering temperature erases the C4 state. These 

results suggest a new possibility of switching local superconductivity by changing the 

symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-

based superconductors.   
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Main text 

Iron-based superconductors (FeSCs) have shown intriguing phenomena related to the 

coexistence of magnetism and superconductivity below the superconducting transition 

temperature (Tc) [1-3]. Although understanding of their detailed interplay is still under debate, 

certain magnetic orders seem to be very crucial in realizing coexistent superconductivity [3-

15]. Recent studies have shown new re-entrant C4 symmetric antiferromagnetic phases (C4 

magnetism from now on) coexisting with superconductivity, and have reported that the 

superconducting Tc is suppressed by C4 magnetic order [16-19]. Direct atomic scale control of 

the Fe layer’s magnetic symmetry and the determination of its correlation with 

superconductivity may be useful for an in-depth understanding of the interplay between 

superconductivity and magnetism. To our knowledge, there has been no report of direct real-

space observation of such a control by local probes and atomic scale demonstration of the 

correlation of magnetism and superconductivity. 

In this regard, the parent compound tetragonal iron-based superconductor Sr2VO3FeAs with 

Tc   33 K [20] is an ideal candidate where the interplay between magnetism and 

superconductivity can be directly demonstrated due to its nearly degenerate magnetic ground 

states. Sr2VO3FeAs has two types of square magnetic ion lattices: a square Fe lattice in the 

FeAs layer and a square V lattice in the two neighboring VO2 layers. At optimal doping, the 

FeAs layer usually prefers C2 magnetism harboring superconductivity while the VO2 layer 

prefers C4 magnetism [1-3,21]. Previous experimental studies of Sr2VO3FeAs [22-28], 

however, have reported inconsistent results about magnetic order; recent nuclear magnetic 

resonance (NMR) measurements on single crystals [29] and neutron diffraction [30] 

experiments show that there is no long range magnetic order in the V lattice at any temperature 

while in the Fe lattice a magnetic order with a small moment of ~ 0.05 μ , possibly due to 

frustration, is developed below 50 K. Indeed, a theoretical GGA calculation has suggested that 
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there can be a number of competing metastable magnetic states composed of different 

symmetries in V and Fe layers [21]. This is a reasonable theoretical prediction considering the 

coupling and frustration between V and Fe layers (Supplemental Material Sec. II). Therefore, 

it has been quite a challenging and interesting experimental task to determine the possible 

magnetic ground states of the heterostructure superconductor Sr2VO3FeAs and the possible 

methods to adjust their balances.  

One possible way to explore the potentially frustrated magnetic states and their relation to 

superconductivity is using a spin-polarized scanning tunneling microscope (SPSTM) to locally 

modify the magnetic environment with spin-polarized tunneling current. Our density functional 

theory (GGA) calculation (Supplemental Material Sec. I) showed a possibility that a non-zero 

net spin density by the injection of spin-polarized tunneling current can induce a C4 magnetic 

order from a pristine C2 magnetic order due to the Hund’s interaction, as illustrated 

schematically in Fig. 1(a)-(d). The spin transfer torque and Joule heating effects will then 

provide the energies to overcome the characteristic potential barriers between the different 

magnetic states [31]. 

In this letter, using a SPSTM we demonstrate that a spin-polarized tunneling current can 

induce a nontrivial metastable C4 magnetic order in the Fe layer not usually achievable through 

thermal excitation. We also showed that a thermal annealing beyond the bulk Fe magnetic 

ordering temperature erases the induced C4 magnetic order. From the tunneling spectroscopy 

analysis measured inside and outside of the region of the induced C4 magnetic order, we also 

find a signature of suppressed superconductivity in the C4 order region, which is shown to be 

consistent with the nesting and spin fluctuation scenario of iron-based superconductivity. 

We grew single crystals of Sr2VO3FeAs with a self-flux method [29], which are then cleaved 

in situ at temperature ~15 K just before mounting on the STM head. Due to the weakly Van der 
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Waals-coupled SrO-SrO layers, the cleaved surface is almost always terminated with 

symmetrically cleaved SrO layer. For real-space magnetic imaging and injection of spin-

polarized current, we have developed a technique of SPSTM with antiferromagnetic Cr-cluster 

tip (Cr tip, from now on), which is created in situ on a Cr(001) surface (Supplemental Material 

Sec. III). Each Cr tip is confirmed on Cr(001) steps for spin contrasts [Fig. S2(c)] and no gap 

in the dI/dV spectrum on Cr(001) [Fig. S2(e)]. 

The 4.6 K STM topographic image of the as-cleaved SrO top layer of Sr2VO3FeAs taken 

with an unpolarized W tip in Fig. 2(c) shows small randomly oriented domains of quasi-C2-

symmetric atomic corrugations. These show no preference for any particular four-fold lattice 

direction over large scales, consistent with their identity as surface reconstructions (SR) in the 

absence of bulk orthorhombicity [30].  

In contrast, our SPSTM images with spin-polarized Cr tip show (above a small bias threshold 

[~30 meV, ~25 pA]), a C4 symmetric (2×2) order with intra-unit-cell topographic modulations 

[Fig. 2(d)-(e)] without any signature of SR seen in unpolarized tip images [Fig. 2(c)]. This 

observation implies that the spin-polarized current induces randomly fluctuating SR with a flat 

time average (See Fig. S7). At the same time, any magnetic signal of Fe-layer observed on the 

top layer oxygen should be the average of the four neighboring Fe spins connected to the As 

ions in each vertical O-V-As tunneling path as shown in Fig. 2(a) and (b). Hence the most 

natural explanation for the observed (2×2) pattern with three groups of apparent height levels 

is the plaquette order in the Fe lattice with flat time-averaged SR. The Fourier-transformed q-

space image [the inset of Fig. 2(d)] also shows the double wave vectors ,  and 

∗ ,  expected from the plaquette order in Ref. 8.  

To understand the nature of magnetic metastability in this system, we performed a 

comparative study of bias-dependent topographic measurements using unpolarized (W) and 
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spin-polarized (Cr) tips at 4.6 K. Using the unpolarized tip, shown in Fig. 3(a)-(c), we found 

that the surface starts to change at biases beyond  300 meV and the fluctuation becomes 

so rapid above 400 meV that the surface starts to appear essentially flat as a result of time-

averaging of the fluctuations. Returning to the low bias condition, as shown in Fig. 3(d), we 

observe that the square area which experienced the high bias scanning has completely changed 

with sharply defined boundaries, as shown in Fig. 4(a).  

In case of the spin-polarized tip [Fig. 3(e)-(g)], the SPSTM image is qualitatively identical 

to the unpolarized tip case at low bias near 10 meV, but the surface starts to change beyond a 

threshold bias 	  30 meV, revealing the (2×2) domain structure and its phase domain 

walls. The significantly lower bias threshold voltage for a spin-polarized tip is indicative of the 

final state and the transition mechanism qualitatively different from those achieved by an 

unpolarized tip as will be discussed further with Fig. 4. Returning to the very low bias condition 

shown in Fig. 3(h), we found that the C4 order is still retained with extra fluctuations (visible 

as random horizontal streaks) implying the extra degeneracy in the C4 state.  

The qualitative equivalence of the pristine surface images taken with an unpolarized tip [Fig. 

3(a)] and a spin-polarized tip [Fig. 3(e)] can be understood from the fact that the pristine state 

will probably have either C2 single stripe correlations or (in the presence of disorder) short-

range C2 single stripe orders, both supporting superconducting pairing (Refs. 21, 29, and 

Supplemental Material Sec. I). None of these two kinds of C2 magnetism is detectable by 

SPSTM due to the particular tunneling geometry of this material [Fig. S3(d)]. 

In order to explore the possibility of erasing of the C4 order by thermal excitation, we 

performed a variable temperature Cr-tip SPSTM measurement [Fig. 3(i)-(l) and Fig. S10]. We 

found that the C4 order can be erased near 60 K, right above the Fe magnetic ordering 

temperature found in NMR measurement [29]. On the other hand, application of magnetic field 
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up to 7 T does not induce any qualitative change in the C4 (2x2) pattern in the Cr tip SPSTM 

topograph [Fig. S11]. These show that the induced C4 order is an antiferromagnetic order in 

the Fe layer and the switching of the Fe magnetism is reversible by thermal agitation beyond 

the bulk Fe magnetic ordering temperature. 

To study the connection between superconductivity and the C4 magnetic order, we performed 

a comparative spectroscopic study. We first acquired a large area topograph using a unpolarized 

tip with bias condition below threshold . We then scanned over a smaller square area near 

the center [black dotted square in Fig. 4(a)] with bias condition exceeding the threshold , 

simulating thermal annealing in this area. Figure 4(a) shows the topograph taken immediately 

afterwards with a bias condition below . It shows the changed surface topographic pattern, 

which corresponds to another instance of the nearly degenerate ground states achievable by 

tunneling current-induced non-uniform thermal excitation. Then we measured the dI/dV spectra 

inside [annealed, Fig. 4(c), blue solid curve] and outside [as-cleaved, Fig. 4(c), green solid 

curve] of the central high-bias-scanned region. The tunneling spectra measured in both regions 

identically show various features; a pair of superconducting coherence peaks near 6 meV 

and +6 meV, and a SDW-gap-edge-like features near 18 meV and +14 meV. These spectral 

features are virtually independent of the changes in SRs as demonstrated in Supplemental 

Material of Ref. 32. This implies that the difference in both regions are only the modification 

of SR due to thermal agitation by the tunneling current, and that most of the spectral features, 

including the superconducting gap, are the physics in the FeAs layer beneath the topmost 

Sr2VO3 layer [32]. 

In the case of spin-polarized (Cr) tip, the results are qualitatively different. Fig. 4(b) shows 

a large area topograph taken with bias condition below  after scanning over the smaller 

square region (black dotted square) with biases over  [Fig. 3(e)-(g)]. The central square 
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region shows the well-defined C4 domains (and various domain walls) induced by the spin-

polarized current causing a sustained spin-polarization lowering the C4 order energy under the 

tip. The dI/dV spectra measured in the region with C4 order [red and purple curves in Fig. 4(d)] 

shows that the superconducting coherence peaks and the SDW-gap-edge-like features are both 

significantly suppressed in the presence of C4 magnetic order.  

One plausible explanation for suppressed superconductivity in this particular C4 (plaquette) 

order is related to the mutual relationship of the spin wave dispersion in Fig. 2(f) (derived from 

Ref. 8) and the overlaid Fermi-surfaces observed in angle-resolved photoemission 

spectroscopy (ARPES) measurement [33]. For the C4 plaquette order, the low energy spin 

fluctuations with wave vectors Q and Q* do not satisfy the nesting condition between any pair 

of the Fermi surfaces Γ and M (X) and thus are unable to effectively mediate pairing in the spin 

fluctuation-based theory of iron-based superconductivity. According to this scenario, the 

suppression of the nesting condition by the induced C4 plaquette order will have a more drastic 

effect on superconductivity compared with switching between C2 and C4 orders that maintain 

the nesting conditions, as shown in the recent studies on Ba1-xKxFe2As2 [17] and Ba1-

xNaxFe2As2 [18] where a more subtle Tc reduction was observed. Among multiple theories of 

iron-based superconductivity based on spin fluctuations [34,35] and orbital fluctuations [36,37], 

our experimental results on this material seem to favor the former. 

In summary, we carried out a real-space study of correlation between superconductivity and 

C4-magnetism in an iron-based superconductor by changing the magnetic symmetry using 

spin-polarized STM. In this magnetically frustrated material, a spin-polarized tunneling current 

induced a nontrivial metastable C4 order not usually accessible through thermal excitation, 

while thermal agitation beyond the bulk Fe spin ordering temperature erased the C4 state. We 

also observed suppressed superconductivity in the C4 order region induced by spin-polarized 

current consistent with the spin fluctuation-based theories. These are a unique and clear 
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demonstration of switching the Fe-layer magnetism and superconductivity by spin-polarized 

current injection and thermal agitation. As suggested in Fig. S12, our findings may be extended 

toward future studies for heterostructure superconductor devices manipulating magnetism and 

superconductivity using spin-polarized and unpolarized currents.  
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FIG. 1. (a)-(d) Schematic illustrations of FeAs-layer configuration potential landscapes for 

Sr2VO3FeAs in various situations: (a) The imaginary case of FeAs and Sr2VO3 layers being 

separated sufficiently apart while the electron doping from Sr layer retained near optimal. The 

C2 magnetism in Fe layer with strong superconductivity is preferred. (b) The natural separation 

found in Sr2VO3FeAs results in inter-layer coupling and near degeneracy among the magnetic 

states with different symmetries, with the C2 magnetism with strong superconductivity still 

being the ground state. (c) If a sufficiently strong spin-polarized current is injected, the balances 

among these states may change, possibly resulting in C4 magnetic states with weak 

superconductivity in the FeAs layer. (d) When the sample is thermally annealed globally or 

locally with high bias tunneling current injection, it may return to the ground states with C2 

magnetism and strong superconductivity.  
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FIG. 2. (a) The structure of the Fe magnetic moments in the C4 (plaquette) order. Each red dot 

represents the oxygen at the top of each vertical O-V-As atomic chain acting as the tunneling 

path. (b) The theoretical electron density plot near the Fermi level (integrated over [ 50,0] 

meV). (c) A typical 4.6 K topograph taken with W tip showing quasi-C2 SRs with random 

orientations. (d) A spin-polarized STM image taken at low junction resistance with nearly-in-

plane polarized Cr tip showing the induced C4-symmetric (2×2) order. The orange, green, and 

blue circles in the Fourier-transformed images (the insets) of (c) and (d) indicate | | 2 /  

(Bragg peaks), 3 /4  and /  respectively. (e) The magnified view of the area in a white 

square in (d), with the (2×2) magnetic unit cells with a C4 plaquette spin model overlayed. Its 

inset shows the cross-sections along the black and blue arrows. (f) The spin wave dispersion 

of the C4 plaquette order and its two momentum transfer vectors (Q and Q*) from localized 

moment picture [8], shown together with the ARPES-based Fermi surfaces (dark curves) [33]. 
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FIG. 3. (a)-(d) Bias dependence of W-tip topograph images showing a threshold voltage for 

SR fluctuation near 	 300 meV. (e-h) Bias dependence of Cr-tip topograph images. C4 

symmetric (2×2) domains and phase domain walls (pDW) (g) are induced at a significantly 

lower threshold (  30 meV) indicating a qualitatively different final state from that 

obtained with the W tip (d). Inset in (g) is taken at slightly higher junction conductance [-50 

mV, 100pA]. In all the FFT insets, the blue (red, green) arrows correspond to | | /  

(5 /4 , 3 /4 ). (i)-(l) Temperature-dependent Cr-tip topographs taken at bias [-50 mV, 

100pA] showing erasure of the C4 order beyond the Fe magnetic ordering temperature. 
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FIG. 4. (a)[(b)] W-tip (Cr-tip) topograph with bias conditions below threshold  ( ) taken 

after the higher bias scans shown in Fig. 3(a)-(c) [Fig. 3(e)-(g)] performed only in the area 

inside the dotted square. The inset image in the solid square in (b) is a Cr-tip topograph with 

higher bias above  showing the domains and the domain walls more clearly (See Fig. S8). 

(c)[(d)] shows the tunneling spectra measured at marked positions with corresponding marker 

colors in (a) with a W tip [(b) with a Cr tip]. The W tip spectra was measured at bias [40 meV, 

300 pA]. The Cr tip spectra was measured at set point of [50 meV, 120 pA] inside the C4 region, 

and at set point of [30 meV, 5 pA] in the pristine region with larger averaging time to avoid 

inducing C4 state during dI/dV measurement. All the data are taken at 4.6 K. 



1 
 

 

Switching Magnetism and Superconductivity with Spin-Polarized Current 

in Iron-Based Superconductor 
 

Seokhwan Choi,1 Hyoung Joon Choi,2 Jong Mok Ok,3,4 Yeonghoon Lee,1 Won-Jun Jang,1,5,╪ 

Alex Taekyung Lee,6 Young Kuk,7 SungBin Lee,1 Andreas J. Heinrich,8,9 Sang-Wook 

Cheong,10 Yunkyu Bang,11 Steven Johnston,12 Jun Sung Kim,3,4 and Jhinhwan Lee1* 

 
1 Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 

34141, Korea 
2 Department of Physics and Center for Computational Studies of Advanced Electronic 

Material Properties, Yonsei University, Seoul 03722, Korea 
3 Department of Physics, Pohang University of Science and Technology, Pohang 37673, 

Korea 
4 Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, 

Pohang 37673, Korea 
5 Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), 

Daejeon 34051, Korea 
6 Department of Applied Physics and Applied Mathematics, Columbia University, New York 

10027, USA 
7 Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea 
8 Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea 

9 Physics Department, Ewha Womans University, Seoul 03760, Korea 

10 Rutgers Center for Emergent Materials and Department of Physics and Astronomy, 
Rutgers University, Piscataway, New Jersey 08854, USA 

11 Department of Physics, Chonnam National University, Kwangju 500-757, Korea 
12 Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 

37996-1200, USA 
╪ Present address: Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 

03760, Republic of Korea; Department of Physics, Ewha Womans University, Seoul 03760, 

Republic of Korea 

 

 

Correspondence*: jhinhwan@kaist.ac.kr 

 . 

mailto:jhinhwan@kaist.ac.kr


2 
 

1. Theoretical study on metastability of C4 magnetism induced by spin-

polarized current 
 

 We used a first-principles pseudopotential method with the generalized gradient 

approximation to the density functional theory (DFT), as implemented in the SIESTA code. 

We used pseudoatomic orbitals to expand the electronic wavefunctions and semicore norm-

conserving pseudopotentials for Sr, V, and Fe, as implemented in the SIESTA code. We used 

experimental crystal structure of Sr2VO3FeAs, which was measured by x-ray diffraction as 

shown in Table 1 of Ref. 22. We included Sr 4s, 4p, 5s, V 3s, 3p, 3d, 4s, Fe 3s, 3p, 3d, 4s 

electrons as valence electrons. To describe the single-stripe and plaquette antiferrromagnetic 

orderings, we used a 2×2×1 supercell containing eight Fe atoms in a single FeAs layer. 

We obtained the total energy of the system for the single-stripe and plaquette 

antiferromagnetic orderings of Fe magnetic moments. As shown in Fig. S1, the single-stripe 

antiferromagnetic ordering in the Fe layer is more stable than the plaquette ordering by about 

80 meV/Fe when the sample has an equal number of spin-up and spin-down electrons, that is, 

the net ferromagnetic moment is zero. For V layers, we obtained that ferromagnetic ordering 

is stable within each V layer, with negligible magnetic coupling between adjacent V layers.  

Then, in order to examine the experimental situation of having spin-polarized current injected 

from the STM tip to the sample, we considered breaking the number balance of the spin-up and 

spin-down electrons in our DFT calculations. As shown in Fig. S1, when we broke the number 

balance of the spin-up and spin-down electrons, that is, the net ferromagnetic moment was 

introduced to the system, the energy difference between the single-stripe and plaquette 

orderings decreased gradually. Finally, the plaquette ordering becomes more stable than the 

single-stripe orderings when the net ferromagnetic moment is larger than about one Bohr 

magneton per formula unit. This result shows that the imbalance of the spin-up and spin-down 

electrons may stabilize the plaquette ordering and it supports our STM results with spin-

polarized current, although it has only qualitative validity in the sense that such a large net 

moment might not occur in our STM experiment and, furthermore, the experimental situation 

is more complicated, with the presence of Cr atoms of the STM tip, strong local electric field 

from the tip, and deviation from equilibrium with net current. 
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FIG. S1. (a) A structural model of tetragonal Sr2VO3FeAs lattice showing the calculation unit 

cell. (b) The total-energy difference between the plaquette and single-stripe antiferromagnetic 

orderings as a function of net ferromagnetic moment. The energy difference is in meV per 

formula unit (Sr2VO3FeAs) and the net ferromagnetic moment is in Bohr magneton per formula 

unit. 
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2. Roles of V and Fe in the magnetism and the superconductivity of 

Sr2VO3FeAs  
 

The main controversy and debating issue about the Sr2VO3FeAs compound is the role of 

VO2 layers and V moment. Early on, there were several works (Refs. 21 and 22) claiming for 

V magnetic moment ordering and its possible role for superconducting pairing. However, 

recent nuclear magnetic resonance (NMR) work (Ref. 29) has measured 51V-NMR and 75As-

NMR signals over the wide temperature range and revealed following information: (1) 51V-

NMR signal (Knight shift) remains completely unchanged from 200 K down to a few K (far 

below Tc ~33 K). (2) On the contrary, 75As-NMR signals (both Knight shift and 1/T1T) detect 

all important phase transitions such as the Fe magnetic ordering temperature (~ 50 K) and the 

superconducting transition (~ 33 K). This experimental results lead to the conclusion that the 

VO2 layers and V moments don’t play any active roles either for magnetism or for 

superconductivity except for inducing the frustration by coupling with the FeAs layer.  

Indeed, based on the DFT calculations, the V d-electrons provide a large spectral density in 

the range of [−50,0] meV and they participate to the Fermi surfaces together with the Fe d-

electrons. However, Ref. 21 has shown with his DFT calculations that the electronic spectra 

near Fermi level, provided by the VO2 layers and the FeAs layers, primarily work separately 

and the coupling between them is a secondary correction. For example, superconductivity 

primarily occurs on the FeAs layers as the portion of the Fermi surface made of Fe d-electrons 

determines the superconducting pairing and the portion made of V d-electrons passively 

follows. This theoretical picture is in accord with the conclusion of this paper.   
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3. Preparation of Cr tip for SPSTM 
 

The spin-polarized Cr cluster tip was prepared by collecting Cr atoms on the apex of the W 

tip by controlled field emission with parameters depending on the sharpness of the base W tip. 

The Cr cluster tip was then tested for proper in-plane spin-polarization by observing multiple 

levels of differential conductance at set point bias near −50 meV on multiple 

antiferromagnetic terraces with identical orientation on a stepped Cr surface as shown in Fig.  

S2.  

 

 

FIG. S2. A sputter-annealed Cr(001) surface topograph (a), and simultaneously taken current 

image (b), and dI/dV image (c), at bias condition of (−50 mV, 200 pA). (c) The spin-contrast 

shown in cross-sections of topograph and dI/dV along a line marked with arrows in (a) and (c). 

(e) dI/dV spectrum taken with bias setpoint 1 nA, −200 meV on Cr(001) surface measured by 

Cr tip.   
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4. SPSTM characteristics of Plaquette and other possible orders in 

Sr2VO3FeAs 
 

In the Cr-cluster tip SPSTM imaging, the vertical tunneling conduction channel made of O-

V-As to the Fe layer equally samples the spin polarization of the four Fe atoms neighboring of 

each As atom. When every four Fe spins underneath a particular O-V-As chain are parallel 

(antiparallel) to the Cr tip’s spin polarization, the top layer O atom will look bright (dark) in 

the SPSTM topograph. On the other hand, if the four Fe spins underneath an O-V-As chain are 

grouped into two roughly parallel spins and two roughly antiparallel spins, they will possess 

neutral brightness just at the average of the brightness of the bright and the dark O atoms. 

In this condition, the plaquette (ODS) order in Fe layer generates a (2×2) magnetic unit cell 

with characteristic intra unit cell pattern as simulated and shown in Fig. S3 (a). In contrast, the 

DDS (diagonal double stripe) order, the Néel order, the single stripe order, and the two kinds 

of spiral orders that may appear in the spin-order phase diagram for Heisenberg model have 

qualitatively different magnetic unit cells as shown in Fig. S3 (b)-(f). 
 

  
 

FIG. S3. Simulated SPSTM topographs for various possible magnetic orders in the tunneling 

geometry of Sr2VO3FeAs in case of no surface reconstruction. (a) Plaquette (orthogonal double 

stripe, ODS) order. (b) DDS (diagonal double stripe) order. (c) Néel order. (d) Single stripe 

order. (e) Spiral order I with wavevector (𝜋𝜋,𝒒𝒒). (f) Spiral order II with wavevector (𝒒𝒒,𝒒𝒒). 
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5. Simulation of phase domain walls of C4 magnetic order induced by 

scanned spin-polarized current 
 

Using the Landau-Lifshitz-Gilbert (LLG) equation and the tunneling geometry of 

Sr2VO3FeAs, we have simulated the SPSTM image showing the phase domains and domain 

walls of the Plaquette magnetic order in the Fe layer, assuming the tunneling geometry of 

Sr2VO3FeAs and no surface reconstruction [38]. The similarity with the experiment is an 

indirect evidence of the induced C4 state being the C4 plaquette order in the Fe layer. 

 

 

FIG. S4. (a) The LLG equation-based simulation result assuming the tunneling geometry of 

Sr2VO3FeAs and no surface reconstruction. (b) The experimental Cr-tip image of the same 

sized area showing dark phase domain walls. 
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6.  C4 (2×2) phase domain walls visualized by spatial lock-in technique 
 

The domain walls of the plaquette (ODS) order can be determined by first detecting the (2×2) 

spatial modulation phases (𝜙𝜙𝑎𝑎(𝑟𝑟),𝜙𝜙𝑏𝑏(𝑟𝑟)) with a technique similar to the time-domain phase 

detection method known as the lock-in technique. To detect the modulation phase 𝜙𝜙𝑎𝑎(𝑟𝑟) in 

a-direction, we choose the Bragg peak position 𝒒𝒒(𝜋𝜋,0) corresponding to (𝜋𝜋, 0) in the Fourier 

Transform (FT) of the SPSTM topograph. We then generate two arrays S and C with identical 

size as the original topograph T, where S and C are filled with sin(𝒒𝒒(𝜋𝜋,0) ∙ 𝒓𝒓) and cos(𝒒𝒒(𝜋𝜋,0) ∙

𝒓𝒓) respectively. Pixel-by-pixel multiplication of T and C denoted as CT (and T and S denoted 

as ST) contains fast spatial modulations with modulation wave vector near 2𝒒𝒒(𝜋𝜋,0) and slow 

spatial modulations with wave vector near 0. As with the time-domain lock-in technique, we 

filter out the fast 2𝒒𝒒(𝜋𝜋,0) modulations with a spatial low pass filter with cut off wave vector 

~𝒒𝒒(𝜋𝜋,0)  and denote them 〈𝐶𝐶T〉  and 〈𝑆𝑆T〉 . Such 〈𝐶𝐶T〉  and 〈𝑆𝑆T〉  contain information of 

𝐴𝐴 cos𝜙𝜙𝑎𝑎(𝑟𝑟) and 𝐴𝐴 sin𝜙𝜙𝑎𝑎(𝑟𝑟) respectively and the phase 𝜙𝜙𝑎𝑎(𝑟𝑟) = tan−1(〈𝐶𝐶T〉, 〈𝑆𝑆T〉) can be 

defined at every pixel of the topograph as shown in Fig. S5 (c). The domain walls (red curves 

in Fig. S5 (b)) determined by the spatial modulation phase shift in a-direction can then be 

defined as the collection of pixels with abrupt reversal (change by ~𝜋𝜋) of phase 𝜙𝜙𝑎𝑎(𝑟𝑟) within 

a magnetic unit cell distance from the pixel. Applying the identical method starting with the 

Bragg peak position 𝒒𝒒(0,𝜋𝜋) will generate 𝜙𝜙𝑏𝑏(𝑟𝑟) (Fig. S5 (d)) and the blue domain walls (blue 

curves in Fig. S5 (b)). The purple domain wall results from overlapping red and blue domain 

walls. 
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FIG. S5. (a) Large area (71 nm x 71 nm) topograph taken at 4.6 K with spin-polarized Cr tip at 

bias condition of (−50 meV, 100 pA) on Sr2VO3FeAs. (b) Image of the automatically detected 

domain walls showing the (2×2) atomic modulations in each domain. The bright dots in each 

domain correspond to the brightest atom in the (2×2) unit cell. (c,d) The spatial modulation 

phase maps of 𝜙𝜙𝑎𝑎(𝑟𝑟) (c) and 𝜙𝜙𝑏𝑏(𝑟𝑟) (d), used to automatically detect the two types of domain 

walls. The piezo-creep-induced lattice distortion results in the slow variations of the phases 

over the field of view, which do not affect the domain wall detection algorithm relying on the 

abrupt phase change by 𝜋𝜋 within the width (~2𝑎𝑎0) of the domain walls. 
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7. Near degeneracy of metastable C4 order driven by spin-polarized 

tunneling current 
 

In case of near degeneracy in metastable C4 order made temporarily stable by spin-polarized 

tunneling current, we can expect to observe telegraphic noise in the tunneling current whose 

fluctuation rate decreases with decreasing bias voltage until it’s too small compared with the 

energy difference between the two metastable states. As shown in Fig. S6 below, once the 

plaquette order is driven by strong spin-polarized tunneling current with bias voltage well over 

𝑉𝑉𝑡𝑡ℎ𝑆𝑆𝑆𝑆 ≈ 30 meV, significant amount of telegraphic noise begins to be observed which becomes 

clearer as the bias voltage is brought down below 30 meV due to the fluctuation rate decreasing 

below the preamp response frequency. The hysteresis of the topography as well as the 

telegraphic noise fluctuation rate due to metastability of the C4 order is clearly visible as a 

function of the bias voltage. 
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FIG. S6. Evidence of near degeneracy of the metastable C4 order driven by spin-polarized 

tunneling current. Once the bias voltage of the strong spin-polarized tunneling current is driven 

beyond 𝑉𝑉𝑡𝑡ℎ𝑆𝑆𝑆𝑆 ≈ 30 meV, the C4 order appears near the tip and is retained even when the bias 

voltage is reduced well below 𝑉𝑉𝑡𝑡ℎ𝑆𝑆𝑆𝑆 again. With the appearance of C4 order, telegraphic noise 

also appears and its rate increases with bias voltage and current which is an evidence of near 

degeneracy of the C4 order. 



12 
 

 
 

FIG. S7. The rate of telegraphic noises showing bias hysteresis due to the tiny potential barriers 

of several meV’s between the nearly degenerate states of the metastable C4 order driven by 

spin-polarized tunneling current. (a)-(i) indicate the corresponding panels in Fig. S6. 

 

The switching mechanism shown in Fig. S1 connects the tunneling current level, rather than 

the bias voltage level, to the change in the plaquette order energy relative to the energy of the 

C2 magnetic state. However, due to the existence of the energy barrier, there should be bias 

voltage threshold too, and both the tunneling current level and the bias voltage level will have 

threshold levels slightly depending on each other. As shown in Fig. S9, we acquired a set of 

additional Cr tip topograph images with increasing bias voltage level when the tunneling 

current level is fixed at 20 pA. We can compare it with the extended version of Fig. 3 shown 

in Fig. S8 below. From the fact that the flat bright areas made of C4 magnetic order are 

increasing in the order of [-30 mV, 15 pA] (Fig. S8(c), green) < [-30 mV, 20 pA] (Fig. S9(e), 

blue) < [-40 mV, 20 pA] (Fig. S8(d), red), we can conclude that both the tunneling current level 

and the bias voltage level play significant positive roles in the probability of switching into the 

C4 state. 
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FIG. S8. Cr tip SPSTM topographs measured as the bias voltage is varied proportionally with 

the tunneling current level. 

 

 
FIG. S9. Cr tip SPSTM topographs measured as the bias voltage is varied at a fixed tunneling 

current level of 20 pA. 
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We have performed the thermal cycle experiment showing the erasure of the C4 magnetic 

order beyond 60 K and put the related figure as shown in Fig. S10. The threshold temperature 

of 60 K agrees well with the Fe magnetic ordering temperature observed in NMR experiment 

in Ref. 29. 

 

 
 

FIG. S10. Erasure of C4 magnetic order by thermal cycle. The Cr tip SPSTM images (a)-(d) 

are taken at the respective temperatures marked above each panel in the order of increasing 

temperature. The W tip topographs show no qualitative change. The setpoint conditions are [-

50 meV, 100 pA] for Cr tip images and [100 meV, 300 pA] for W tip images. In the FFT insets, 

the blue (red, green) arrows correspond to |𝒒𝒒| = 𝜋𝜋/𝑎𝑎0 (5𝜋𝜋/4𝑎𝑎0, 3𝜋𝜋/4𝑎𝑎0). 
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We also performed magnetic field dependent SPSTM imaging of the C4 magnetic order 

using a 7 T magnet in our STM. Due to the antiferromagnetic nature of the C4 magnetic order, 

there was virtually no change in the C4 magnetic order up to 7 T as shown in Fig. S11 below. 

Considering the 60 K temperature threshold of the above thermal cycle experiment, we may 

need several times larger magnetic field to achieve qualitative change in the C4 state. 

 

 
 

FIG. S11. Magnetic field dependence of Cr tip SPSTM topographs. There is little qualitative 

change up to 7 T, except for the tunneling-current-induced phase domain wall motions that 

occur irrespective of the magnetic field [38]. 
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8. Conceptual design of device switching magnetism and superconductivity 

using spin-polarized and unpolarized current. 

 
The principle of switching magnetism and superconductivity by spin-polarized and 

unpolarized currents as demonstrated by our research may be used to build a circuit device 

made of a single Sr2VO3FeAs layer sandwiched by a ferromagnetic electrode and a normal 

metal electrode as shown in Fig. S12 below.   

 

 

FIG. S12. Conceptual diagrams of electronic device switching magnetism and 

superconductivity in the channel using currents from (a) ferromagnetic (FM) and (b) normal 

metal (NM) electrodes. 
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