320 research outputs found

    Potential novel pharmacological therapies for myocardial remodelling

    Get PDF
    Left ventricular (LV) remodelling remains an important treatment target in patients after myocardial infarction (MI) and chronic heart failure (CHF). Accumulating evidence has supported the concept that beneficial effects of current pharmacological treatment strategies to improve the prognosis in these patients, such as angiotensin-converting enzyme (ACE) inhibition, angiotensin type 1 receptor blocker therapy, and beta-blocker therapy, are related, at least in part, to their effects on LV remodelling and dysfunction. However, despite modern reperfusion therapy after MI and optimized treatment of patients with CHF, LV remodelling is observed in a substantial proportion of patients and is associated with an adverse clinical outcome. These observations call for novel therapeutic strategies to prevent or even reverse cardiac remodelling. Recent insights from experimental studies have provided new targets for interventions to prevent or reverse LV remodelling, i.e. reduced endothelial nitric oxide (NO) synthase-derived NO availability, activation of cardiac and leukocyte-dependent oxidant stress pathways, inflammatory pathway activation, matrix-metalloproteinase activation, or stem cell transfer and delivery of novel paracrine factors. An important challenge in translating these observations from preclinical studies into clinical treatment strategies relates to the fact that clinical studies are designed on top of established pharmacological therapy, whereas most experimental studies have tested novel interventions without concomitant drug regimens such as ACE inhibitors or beta-blockers. Therefore, animal studies may overestimate the effect of potential novel treatment strategies on LV remodelling and dysfunction, since established pharmacological therapies may act, in part, via identical or similar signalling pathways. Nevertheless, preclinical studies provide essential information for identifying potential novel targets, and their potential drawbacks, and are required for developing novel clinical treatment strategies to prevent or reverse LV remodelling and dysfunctio

    Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes.

    Get PDF
    Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts-which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin-served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta

    Multicenter double blind trial of autologous bone marrow mononuclear cell transplantation through intracoronary injection post acute myocardium infarction – MiHeart/AMI study

    Get PDF
    Background: Myocardial infarction remains as a major cause of mortality worldwide and a high rate of survivors develop heart failure as a sequel, resulting in a high morbidity and elevated expenditures for health system resources. We have designed a multicenter trial to test for the efficacy of autologous bone marrow (ABM) mononuclear cell (MC) transplantation in this subgroup of patients. The main hypothesis to be tested is that treated patients will have a significantly higher ejection fraction (EF) improvement after 6 months than controls. Methods: A sample of 300 patients admitted with ST elevation acute myocardial infarction (STEMI) and left ventricle (LV) systolic dysfunction, and submitted to successful mechanical or chemical recanalization of the infarct-related coronary artery will be selected for inclusion and randomized to either treated or control group in a double blind manner. The former group will receive 100 x 106 MC suspended in saline with 5% autologous serum in the culprit vessel, while the latter will receive placebo (saline with 5% autologous serum). Implications: Many phase I/II clinical trials using cell therapy for STEMI have been reported, demonstrating that cell transplantation is safe and may lead to better preserved LV function. Patients with high risk to develop systolic dysfunction have the potential to benefit more. Larger randomized, double blind and controlled trials to test for the efficacy of cell therapies in patients with high risk for developing heart failure are required.Brazilian Ministry of Science and Technology (MCT)/The Financing Agency for Studies and Projects (FINEP

    Long-Term Effects of Autologous Bone Marrow Stem Cell Treatment in Acute Myocardial Infarction: Factors That May Influence Outcomes

    Get PDF
    AIMS: To investigate whether there are important sources of heterogeneity between the findings of different clinical trials which administer autologous stem cell treatment for acute myocardial infarction (AMI) and to evaluate what factors may influence the long-term effects of this treatment. METHODS AND RESULTS: MEDLINE (1950-January 2011), EMBASE (1974-January 2011), CENTRAL (The Cochrane Library 2011, Issue 1), CINAHL (1982-January 2011), and ongoing trials registers were searched for randomised trials of bone marrow stem cells as treatment for AMI. Hand-searching was used to screen recent, relevant conference proceedings (2005-2010/11). Meta-analyses were conducted using random-effects models and heterogeneity between subgroups was assessed using chi-squared tests. Planned analyses included length of follow-up, timing of cell infusion and dose, patient selection, small trial size effect, methodological quality, loss of follow-up and date of publication. Thirty-three trials with a total of 1,765 participants were included. There was no evidence of bias due to publication or time-lag, methodological quality of included studies, participant drop-out, duration of follow-up or date of the first disclosure of results. However, in long-term follow-ups the treatment seemed more effective when administered at doses greater than 10(8) cells and to patients with more severe heart dysfunction. CONCLUSIONS: Evaluation of heterogeneity between trials has not identified significant sources of bias in this study. However, clinical differences between trials are likely to exist which should be considered when undertaking future trials
    • …
    corecore