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Left ventricular (LV) remodelling remains an important treatment target in patients after myocardial
infarction (MI) and chronic heart failure (CHF). Accumulating evidence has supported the concept
that beneficial effects of current pharmacological treatment strategies to improve the prognosis in
these patients, such as angiotensin-converting enzyme (ACE) inhibition, angiotensin type 1 receptor
blocker therapy, and b-blocker therapy, are related, at least in part, to their effects on LV remodelling
and dysfunction. However, despite modern reperfusion therapy after MI and optimized treatment of
patients with CHF, LV remodelling is observed in a substantial proportion of patients and is associated
with an adverse clinical outcome. These observations call for novel therapeutic strategies to prevent
or even reverse cardiac remodelling.

Recent insights from experimental studies have provided new targets for interventions to prevent or
reverse LV remodelling, i.e. reduced endothelial nitric oxide (NO) synthase-derived NO availability, acti-
vation of cardiac and leukocyte-dependent oxidant stress pathways, inflammatory pathway activation,
matrix-metalloproteinase activation, or stem cell transfer and delivery of novel paracrine factors. An
important challenge in translating these observations from preclinical studies into clinical treatment
strategies relates to the fact that clinical studies are designed on top of established pharmacological
therapy, whereas most experimental studies have tested novel interventions without concomitant
drug regimens such as ACE inhibitors or b-blockers. Therefore, animal studies may overestimate the
effect of potential novel treatment strategies on LV remodelling and dysfunction, since established
pharmacological therapies may act, in part, via identical or similar signalling pathways. Nevertheless,
preclinical studies provide essential information for identifying potential novel targets, and their poten-
tial drawbacks, and are required for developing novel clinical treatment strategies to prevent or reverse
LV remodelling and dysfunction.
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1. Introduction

Left ventricular (LV) maladaptive remodelling has been con-
sistently associated with an impaired prognosis in patients
after myocardial infarction (MI) and patients with chronic
heart failure (CHF),1–3 and is thought to represent an
important therapeutic target in these patients. Mechanical
reperfusion therapy and current pharmacological treatment
approaches can limit, to some extent, cardiac dysfunction
and adverse LV remodelling in patients with an acute MI,
however, LV remodelling is still observed in a substantial
proportion of these patients despite modern reperfusion
therapy, and is most prominent in patients with large
anterior infarctions and/or microvascular dysfunction.4–6

Recent insights into molecular mechanisms leading to
LV remodelling and dysfunction, such as inflammatory

pathway activation, oxidant stress pathway activation,
and matrix-metalloproteinase (MMP) activation, provide
potential novel targets for prevention or reversal of LV
remodelling and dysfunction.

Whereas in clinical studies, LV remodelling has largely
been assessed by analyzing changes in LV end-diastolic and
end-systolic volumes, experimental studies have mostly
analyzed the effects of novel interventions on cardiomyocyte
hypertrophy, myocardial fibrosis, re-expression of an embryo-
nic gene expression pattern, and LV dilation and dysfunction.
Importantly, LV remodelling may not only lead to a progress-
ive LV dilation and dysfunction, but may also be associated
with the risk of ventricular arrhythmias.7 Therefore, an
altered LV architecture and function during post-infarction
LV remodelling are likely important substrates for triggering
malignant ventricular arrhythmias.

LV remodelling is thought to represent a valuable
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patients with MI or CHF. In support of this concept, beneficial
effects on LV remodelling by both, pharmacological and
non-pharmacological therapies have been associated with
beneficial effects on prognosis in these patients. This has
been observed for angiotensin-converting enzyme (ACE)-
inhibitor and b-blocker therapy as described later.
Furthermore, recently it was demonstrated in patients
with CHF receiving cardiac resynchronization therapy, that
LV reverse remodelling but not clinical improvement pre-
dicted long-term survival,8 further supporting the concept
that adverse LV remodelling represents an important thera-
peutic target. However, as a note of caution, like with most
surrogate endpoints in clinical studies, not all therapies that
were associated with a beneficial effect on LV remodelling
were later associated with improved clinical outcome,
suggesting that disease progression may also occur in other
ways and in the absence of progressive cardiac remodelling.
For example, treatment with the soluble tumor necrosis
factor-a (TNF-a) antagonist etanercept improved LV remo-
delling and dysfunction in a study of patients with severe
CHF,9 but was later not associated with an improvement
in clinical outcome in larger studies.10 The underlying
reasons for these different observations are not completely
understood, but likely include potential adverse effects of
TNF-a antagonism and potential beneficial effects of cyto-
kine activation in patients with CHF.11 In fact, most, but
not all, interventions that attenuated LV remodelling had a
benefical effect on survival in clinical trials. Thus, remodel-
ling appears to represent an attractive surrogate endpoint in
treatment trials but does not, of course, replace outcome
trials. However, prevention of LV remodelling, per se, is an
important target for therapeutic interventions. Specifically,
interventions that attenuate LV remodelling but do not
improve outcome are likely to adversely affect mortality
for other and contrasting effects on a cellular or molecular
level, e.g. surgical partial left ventriculectomy or surgical
inhibition of LV volume expansion by implantation of a
CorCap device do not provide beneficial effects probably
because surgery is associated with detrimental architectural
effects and/or impaired relaxation which may counteract
the beneficial effects of the primary surgical target. Thus,
while targeting LV remodelling should represent an attrac-
tive surrogate and target, the limitations are obvious and
therefore targeting LV remodelling does no replace clinical
outcome trials but rather represents a useful tool in the
development of a new therapeutic intervention.

In this review, we briefly summarize the effects of current
pharmacological therapies on LV remodelling and dysfunc-
tion. We then focus on potential novel pharmacological
approaches to prevent or reverse LV remodelling and
dysfunction based on recent insights into the molecular
mechanisms leading to LV remodelling and dysfunction
(Table 1).

2. Current pharmacological approaches
to limit cardiac remodelling

2.1 Angiotensin-converting enzyme inhibitors/
angiotensin type 1-receptor blockers

ACE inhibitors attenuate LV remodelling in patients after
MI with reduced LVEF,12 and this has been suggested to
contribute to their beneficial effects on prognosis. This

concept has been strongly supported by the observation
that attenuation of ventricular enlargement with the ACE
inhibitor captopril was associated with a reduction in
adverse events in patients after MI, suggesting a link
between attenuation of LV enlargement by captopril and
improved clinical outcome.13 The VALIANT (Valsartan in
Acute Myocardial Infarction Trial) echo substudy examined
the effect of combined ACE-inhibitor/angiotensin type 1
(AT1)-receptor blocker therapy on LV remodelling in patients
after MI with reduced systolic function and/or with CHF.
A more complete inhibition of the renin-angiotensin aldo-
sterone system (RAAS) by combining ACE-inhibitor and
AT1-receptor blocker therapy did not promote additional
effects on cardiac volumes or LVEF and clinical outcome as
compared with either therapy alone in these patients.14

In contrast, a subgroup analysis from Val-HeFT (Valsartan
Heart Failure Trial) has shown that in patients with CHF
and a reduced LVEF combination of the AT1-receptor
blocker valsartan with ACE-inhibitor therapy had a more
pronounced effect on LV remodelling as compared with
ACE-inhibitor therapy alone.15 In these patients, LVEF
increased, and LV end-diastolic dimension decreased signifi-
cantly more with combined and prolonged RAAS blockade.15

Furthermore, results from the CHARM (Candesartan in
Heart Failure Assessment of Reduction in Mortality and
Morbidity) trial programme are in support of a prognostic
benefit of adding the AT1-receptor antagonist candesartan
to ACE-inhibitor and ß-blocker therapy in patients with
CHF and a reduced LVEF.16

2.2 Beta-blockers

Prolonged therapy with several b-blockers has been
suggested to limit and, in a substantial proportion of
patients, even to reverse LV remodelling and dysfunction
after MI or in CHF. The CAPRICORN (Carvedilol Post Infarction
Survival Control in Left Ventricular Dysfunction) echo
substudy has demonstrated a beneficial effect of the
b-blocker carvedilol on LV remodelling in patients with
post-MI LV dysfunction receiving ACE-inhibitor therapy;
carvedilol reduced LV end-systolic volume and improved
LVEF as compared with placebo in that study.17

Table 1 Potential novel therapeutic strategies to prevent or
reverse left ventricular remodelling

Modulators of NO activity and signalling pathways
Statins
Phosphodiesterase 5A inhibitors (e.g. sildenafil)
NO enhancer
Cyclic guanylyl cyclase activator
Anti-oxidant strategies (e.g. statins, allopurinol, SOD mimetics)
Modulators of inflammation and pro-inflammatory cytokines
Metalloproteinase inhibitors
Pro-angiogenetic factors and/or cell transfer
Ryanodine receptor-stabilizing drugs
Modulators of MEF2 or HDACs
Antagomirs (micro RNAs controlling growth promoting factors)

List of potential therapeutic strategies to prevent or reverse LV remo-
delling, some of which are discussed in the text. HDAC denotes histone
deacetylase; LV, left ventricular; NO, nitric oxide; MEF2, myocyte enhan-
cer factor 2; SOD, superoxide dismutase.
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In patients with CHF, treatment with metoprolol exerted a
beneficial effect on LV remodelling already after 3 months of
therapy.18 In the magnetic resonance imaging (MRI) substudy
of MERIT-HF (Metoprolol Randomized Intervention Trial in
Heart Failure), reverse LV remodelling was observed after
metoprolol succinate therapy.19 Similarly, carvedilol
therapy reduced LV volumes and increased LVEF in patients
with CHF due to ischaemic heart disease on-top-of
ACE-inhibitor therapy,20 and these changes have been
suggested to explain, at least in part, improved clinical out-
comes. Moreover, Metra et al. have reported that patients
with CHF who showed a marked improvement in LVEF after
9–12 months of b-blocker therapy with metoprolol or carve-
dilol had an excellent prognosis, further suggesting that
beneficial effects of b-blockers on LV remodelling and dys-
function are associated with improved clinical outcomes.21

Preservation of LV function has also been observed after 5
months of bisoprolol therapy in patients with CHF and this
treatment effect was related to an improved prognosis.22

In elderly patients with CHF and advanced LV systolic dys-
function, nebivolol therapy reduced LV size and improved
LVEF as reported in the echocardiographic substudy of the
SENIORS (Study of the Effects of Nebivolol Intervention on
Outcomes and Rehospitalisation in Seniors with Heart
Failure) trial.23 Taken together, there is clear evidence for
these four b-blockers to exert beneficial effects on LV remo-
delling and dysfunction, and that these changes are related
to beneficial effects on prognosis in patients with CHF.

As it is a current focus to better identify and treat
patients with asymptomatic LV dysfunction in order to
prevent the development of CHF, the results of the recent
REVERT (Reversal of Ventricular Remodeling with Toprol-XL)
study are of interest. These investigators have shown
that metoprolol succinate therapy reverses LV remodelling
and dysfunction in patients with asymptomatic LV systolic
dysfunction.24

2.3 Aldosterone antagonists

Aldosterone, which is also produced by endothelial and vas-
cular smooth-muscle cells in the heart, may exert potent
detrimental effects on LV remodelling, including a stimu-
lation of myocardial fibrosis.25,26 In line with this concept,
Chan et al. have recently observed in an MRI study that
adding spironolactone to AT1-receptor blocker therapy
with candesartan reduces LV end-diastolic and end-systolic
volumes in patients with mild-to-moderate CHF over a
1-year follow-up.27 The observed reductions in LV volumes
and mass and the improvement of LVEF suggest that spirono-
lactone may exert beneficial myocardial structural effects.

3. Novel pharmacological approaches

3.1 Statins

While 3-hydroxy-3-methylglutaryl-coenzyme A reductase
inhibitors, also known as statins, have a well-established
role in the treatment and prevention of ischaemic coronary
artery disease, their usefulness in the setting of CHF and
LV dysfunction remains under investigation. In addition to
a reduction in LDL, statins clearly have the potential
to exert additional, ‘pleiotropic’ cardiac and vascular
effects. Several experimental studies have shown that
statins inhibit cardiomyocyte hypertrophy28,29 and prevent

LV remodelling and dysfunction in rodent models of MI30–32

as well as in dogs with microembolization-induced CHF.33

One of the best characterized pleiotropic actions of statin
therapy is the effect on endothelial nitric oxide synthase
(eNOS) activity, that likely plays an important role in limit-
ing LV remodelling.34 In mice, after MI we have observed
that statin therapy reduces cardiomyocyte hypertrophy
and interstitial fibrosis and improves LV function to a sub-
stantially greater extent in wild-type mice as compared
with eNOS-deficient mice, strongly suggesting that the
effect of statins on eNOS plays an important role for statin-
mediated beneficial effects on LV remodelling.35

An important difference between these preclinical
studies and clinical trials is that patients in clinical trials
are already treated, in the case of patients with CHF with
ACE-inhibitors, b-blockers, and other drugs, and that the
novel substance is then tested on-top-of a complex drug
regime. However, in a small, randomized clinical study by
Node et al. including 51 patients with CHF and non-
ischaemic dilated cardiomyopathy, short-term (14 weeks)
simvastatin therapy modestly improved LV function as
examined by echocardiography and clinical status.36 More-
over, we have observed a beneficial effect of statin
therapy on endothelial nitric oxide (NO) availability in
patients with CHF due to non-ischaemic cardiomyopathy,
that was independent of LDL lowering, because it was not
seen with the same degree of LDL reduction after ezetimibe
therapy, suggesting that statin therapy augments eNOS
activity in patients with CHF independent of its effects on
LDL cholesterol.37 Furthermore, in an echocardiographic
study by Sola et al. that included 108 patients with non-
ischaemic CHF and a LVEF �35%, the use of atorvastatin
improved LVEF by approximately 4% and reduced LV end-
diastolic diameter by �4 mm as compared with placebo.38

Krum et al. have conducted a 6-month randomized placebo-
controlled study of high-dose rosuvastatin in 86 patients
with ischaemic or non-ischaemic CHF and a LVEF,40% and
did not observe a significant change in LVEF as detected by
radionuclide ventriculography or LV end-diastolic diameter
as measured by echocardiograhy.39 The reasons for these
discrepant findings remain uncertain, but may be related
to differences in the patient populations and statin doses.

In retrospective analyses, statin therapy has been associ-
ated with an improved survival in ischaemic and non-
ischaemic cardiomyopathy40 and a reduced development
of CHF in patients with stable coronary disease.41 Further-
more, high-dose as compared with moderate-dose statin
therapy was associated with reduced CHF hospitalizations
in patients with pre-existing CHF and an acute coronary
syndrome or in patients with stable coronary disease.42,43

In the CORONA (Controlled Rosuvastatin Multinational Trial
in Heart Failure) trial that examined an elderly patient
population (mean age, 73 years) with ischaemic systolic
CHF, rosuvastin therapy did not significantly reduce the
primary endpoint of death from cardiovascular causes, non-
fatal MI, or non-fatal stroke, or reduce the number of deaths
from any cause, although the drug did reduce the number of
cardiovascular hospitalizations.44 Notably, CORONA was
designed to test the hypothesis that a reduction of ischae-
mia in ischaemic cardiomyopathy by LDL lowering and pre-
venting the progression of coronary artery disease results
in improved outcomes. The relatively low dose of rosuvasta-
tin that was used in CORONA may not exert much of the
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pleiotropic effects required for myocardial effects with
impact on LV remodelling. However, the GISSI-HF (GISSI
Heart Failure) trial has examined the role of statin therapy
in a population with ischaemic and non-ischaemic cardio-
myopathy,45 and the results are completely neutral.

The above observations may support the notion that
statins exert beneficial effects in earlier stages of heart
failure and may attenuate the development of heart
failure. In contrast, the benefits of statin therapy are
likely limited in elderly patients with advanced CHF and
established ischaemic cardiomyopathy.

3.2 Nitric oxide-cGMP signalling as a therapeutic
target

The free radical gas NO, which is produced in the heart by
virtually all cell types and by all three NOS isoforms, is an
important modulator of cardiomyocyte function and survival
besides its well known impact on the vascular system.
NO at low concentrations protects cardiomyocytes from
ischaemia/reperfusion-injury via soluble guanylyl cyclase
activation and cGMP formation.47–51 Moreover, NO has
been shown to exert beneficial effects on LV remodelling
post-MI.46 Potential downstream targets for NO/cGMP-
mediated effects in cardiomyocytes include cGMP-regulated
phosphodiesterases and cGMP-dependent protein kinase
type 1 (PKG I) (Figure 1). Previous studies have implicated
PKG I in the regulation of the inotropic state, hypertrophic
growth, and gene expression in cardiomyocytes after
exposure to NO and other cGMP-elevating agents.52–56

Recently, we found that PKG I protects cardiomyocytes
from apoptotic cell death during ischaemia/reperfusion-
injury, in part, via inhibition of TAB1-p38 signalling.57

Takimoto et al.58 have recently shown that inhibition of
cGMP phospodiesterase 5A may provide an attractive
pharmacological means to take advantage of the beneficial
effects of cGMP. By inhibiting the breakdown of cGMP, a
sustained activation of PKG I can occur thus preventing
and reversing cardiac hypertrophy and remodelling.58

Additional approaches to stimulate NO or its signalling
pathways may be the use of b-blockers with NO enhancing
properties59 or NO-enhancing drugs.60

Importantly, however, the source and amount of NO likely
play a critical role for the effects of NO on cardiac remodel-
ling and dysfunction. Whereas low doses of NO produced
by eNOS have consistently been observed to exert cardio-
protective effects in numerous preclinical studies, large
amounts of NO as produced by inducible NO synthase (iNOS)
have been suggested to exert detrimental effects and are
not necessarily cardioprotective.61–63 This may, at least in
part, be explained by increased peroxynitrite formation, as
is observed in cardiomyocyte iNOS overepressing mice.64

3.3 Potential targets for selective anti-oxidant
therapy

Over the last years, numerous experimental studies have
demonstrated a critical role of oxidant stress pathways for
LV remodelling and dysfunction after MI. We have observed
that mice which are deficient in the NAD(P)H oxidase
subunit p47phox show a marked reduction in cardiomyocyte
hypertrophy, LV dilation and dysfunction after MI65

(Figure 2). Reduced MMP-2 activation and cardiomyocyte
apoptosis in the infarct border zone likely contribute to
the protection from LV remodelling in these mice. Moreover,
in this study we have observed that cardiac xanthine oxidase
activation after MI was dependent on NAD(P)H oxidase acti-
vation. Xanthine oxidase has been proposed to be involved
in LV remodelling and dysfunction in several experimental
and small-scale clinical studies.66,67

In a small clinical study, Cingolani et al. have observed
that 1 month of therapy with the xanthine oxidase inhibitor
oxipurinol improves LVEF in patients with CHF and a LVEF
,40%.68 In the OPT-CHF (Oxypurinol Therapy for CHF)
study, Hare et al. have examined the effects of oxipurinol
in 402 patients with advanced systolic CHF receiving
optimal medical therapy.69 While oxipurinol did not
produce clinical improvements in unselected CHF patients,
a post hoc analysis suggested that benefits may occur in
patients with elevated serum uric acid and in relation to
the degree of uric acid reduction. Accordingly, serum uric
acid may serve as a potential biomarker to target xanthine
oxidase inhibition in CHF,69 however, this will have to be
tested in a prospective study.

Furthermore, experimental studies using myeloperoxidase
(MPO)-deficient mice have suggested that leukocyte-
derived, MPO-generated oxidants have a profound adverse
effect on LV remodelling and function after MI.70,71 Cardiac
MPO activation may also be targeted by anti-inflammatory
treatment strategies as described below.

Taken together, the present studies suggest that production
of oxidant radicals by NAD(P)H oxidase, xanthine oxidase,
or MPO is critically involved in LV dilation and dysfunction
after MI and in CHF. However, the ideal target to interfere
with myocardial oxidant stress is still to be identified.

3.4 Anti-inflammatory treatment strategies

Several studies have shown that inflammation contributes
importantly to LV remodelling processes. The major chal-
lenge for an effective anti-inflammatory strategy to
prevent or reverse LV remodelling is to limit detrimental
inflammatory cell-mediated changes, while simultaneously

Figure 1 Nitric oxide-cGMP signalling as a potential therapeutic target.
cGMP is thought to promote anti-hypertrophic/anti-remodelling effects in
the heart, at least in part via cGMP-dependent protein kinase type I (PKG I)
and inhibition of the calcineurin-NFAT signalling pathway. cGMP is produced
via nitric oxide (NO)-stimulated soluble guanylyl cyclase (sGC) activation or
natriuretic peptide-stimulation of the NPRA receptor. cGMP is degraded by
phosphodiesterase 5A. sGC activators, endothelial NO synthase (eNOS) enhan-
cers and PDE5A inhibitors (e.g. sildenafil) may be used to enhance cGMP sig-
nalling (see text for further details).
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maintaining adequate and appropriate LV repair responses.
The initial remodelling phase after MI leading to a removal
of necrotic debris and to scar formation (infarct healing)
should probably be considered beneficial as it serves to
maintain LV structural integrity and to prevent LV rupture.
Interference with the process of scar formation during the
acute post-MI period, e.g. by administration of glucocorti-
costeroids and non-steroidal anti-inflammatory drugs
(NSAID), has been suggested to result in increased thinning
of the infarct zone and potentially greater degrees of
infarct expansion. Therapy with NSAIDs (ibuprofen and indo-
methacin) in the early post-MI period resulted in an
increased thinning of the infarct zone in experimental
studies.72,73 More recently, Timmers et al. have reported
that therapy with the COX-2 inhibitor celecoxib increased
mortality and enhanced LV remodelling and dysfunction in
a pig model after MI.74

In contrast, studies in rodent models, such as in rats after
MI,75 have reported beneficial effects of COX-2 inhibition on
LV dysfunction when therapy was started late after MI. In a
recent study in a rodent model, Fang et al. examined inflam-
matory cell infiltration, MMP-9 activation, and the risk of
cardiac rupture after MI.76 Inflammatory cell infiltration
was greater in male as compared with female mice and
was associated with a higher risk of cardiac rupture, poten-
tially due to increased MMP-9 activation.76 Moreover, several
recent experimental studies have suggested that specific

anti-inflammatory interventions may exert potent beneficial
effects on LV remodelling and dysfunction, raising the
possibility that an appropriately timed and targeted anti-
inflammatory therapeutic intervention may exert beneficial
effects on LV remodelling and dysfunction.

3.4.1 Innate immunity-toll-like receptors
Toll-like receptors (TLRs), primary innate immune receptors
that are also activated by endogenous signals, such as
oxidative stress and heat shock proteins, are expressed by
cardiomyocytes and vascular cells. Of note, LV dilation and
dysfunction, mortality, and myocardial fibrosis in the non-
infarcted area were markedly attenuated in TLR-2-deficient
mice after MI.77 Furthermore, two recent experimental
studies have observed that TLR-4 activation, that is
increased in the failing myocardium, is an important
mediator of maladaptive LV remodelling and dysfunction
and reduced survival after MI.78,79 These studies suggest a
causal role of TLR-2 and -4 activation in post-MI maladaptive
LV remodelling, likely mediated via stimulation of pro-
inflammatory cytokine production and matrix degradation.
TLRs may therefore constitute a novel treatment target to
prevent LV remodelling and dysfunction. Complete inhibition
of these pathways may yield undesired effects due to func-
tional loss of this innate immune mechanism, however,
partial inhibition for a limited time period may be beneficial
and should be further explored.

3.4.2 Interleukin-1 receptor antagonists
A recent experimental study has shown that exogenous
administration of a recombinant human interleukin (IL)-1
receptor antagonist (anakinra) can reduce cardiomyocyte
apoptosis and LV remodelling after acute MI.80 Ikonomidis
et al. have reported antioxidant effects and improved LV
function after short-term anakinra therapy in 23 patients
with rheumatoid arthritis.81 A more detailed understanding
of the role of specific inflammatory pathways for LV remo-
delling may provide interesting novel opportunities for
therapeutic interventions to prevent or reduce LV remodel-
ling. In this context, several factors have recently been
identified, either by microarray approaches or elucidation
of paracrine factors released from stem cells, that are
involved in the modulation of inflammation and cardiac
repair mechanisms post-MI. Growth-differentiation factor-15,
for example, is produced in the infarcted and failing heart
and has been shown to identify patients at high risk for
adverse cardiovascular events.82–85 Moreover, frizzled-related
protein 2 has been shown to markedly attenuate the
remodelling process after MI.86

3.5 Selective matrix-metalloproteinase inhibition

MMPs are a family of proteolytic enzymes promoting extra-
cellular protein degradation in the cardiovascular system.
They have been shown in several experimental studies to
participate in the complex remodelling processes of the
myocardium after MI and in CHF.87 The biological activity
of MMPs is regulated at different levels, i.e. gene
expression, activation of precursor proenzyme forms, and
inhibition by endogenous tissue inhibitors of MMPs, the
tissue inhibitor of metalloproteinases (TIMPs). Notably,
plasma TIMP-1 (tissue inhibitor of metalloproteinase-1) and

Figure 2 NAD(P)H oxidase as a potential therapeutic target: Effect of
NAD(P)H oxidase subunit p47phox deficiency on left ventricular remodelling
and dysfunction post-myocardial infarction (modified from65): (A) Left ventri-
cular end-diastolic diameter of sham-operated and MI-operated wild-type
and p47phox2/2 mice. (B) Left ventricular ejection fraction of sham- and
MI-operated wild-type mice and p47phox2/2 mice. (C) Representative
M-mode echocardiograms obtained from sham-operated and MI-operated
mice. (D) Myocardial xanthine oxidase activation after MI is dependent on
NAD(P)H oxidase as determined by ESR spectroscopy measurements of
xanthine oxidase activity post-MI. **P , 0.01 vs. sham WT, P , 0.01 vs.
sham p47phox2/2.
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MMP-9 have been identified as indicators of LV remodelling
and prognosis in patients after acute MI.88

Selective MMP inhibition has been shown to reduce LV
remodelling without inhibiting angiogenesis after MI in
experimental models.89 In the PREMIER (Prevention of
Myocardial Infarction Early Remodelling) trial,90 the first
human therapeutic study with an MMP inhibitor in patients
after MI, 253 patients with first ST-segment elevation MI
(LVEF ,40%) were randomized to placebo or the oral MMP
inhibitor PG-116800, that previously exerted significant
anti-remodelling effects in animal models of MI and ischae-
mic CHF.91 However, after 90 days of follow-up no significant
effects on LV remodelling or clinical outcome were noted in
that study.90 PG-116800 is a MMP inhibitor of the hydroxamic
acid class with high affinity for MMP-2, -3, -8, -9, -13, and
-14 and low affinity for MMP-1 and -7.90 Notably, an exper-
imental study by Spinale et al. has demonstrated that MMP
inhibition conferred a beneficial effect on survival early
post-MI, but that prolonged MMP inhibition was associated
with higher mortality rates and adverse LV remodelling,
suggesting that there may exist an optimal time window
with respect to pharmacological interruption of MMP activity
in the post-MI period.92 In support of this concept, Kelly
et al. have observed a biphasic profile of plasma MMP-9
that is related to LV remodelling and function in patients
after MI.93 Higher early levels of MMP-9 were associated
with the extent of LV remodelling. In contrast, higher
plateau levels late after MI were associated with a relative
preservation of LV function. Therefore, the temporal
profile, rather than the absolute magnitude, of MMP-9
activity appears to be important for LV remodelling after
AMI,93 and likely is important for potential novel therapeutic
strategies.

3.6 Angiogenesis and/or stem cell transfer

Coronary angiogenesis is enhanced during the acute phase of
adaptive cardiac growth but is reduced as hearts undergo
maladaptive remodelling.94–96 Coronary angiogenesis is
associated with the induction of myocardial VEGF and
angiopoietin-2 expression, while inhibition of angiogenesis
leads to a decreased capillary density, contractile
dysfunction, and impaired cardiac growth. Endothelium-
and cardiomyocyte-derived factors are involved in cardiac
angiogenesis.95 Thus, both cardiac size and function are
angiogenesis dependent, and disruption of coordinated
tissue growth and angiogenesis in the heart may contribute
to the progression from adaptive cardiac hypertrophy
to CHF.

Recent observations indicate that stem and progenitor cells
can release pro-angiogenic factors which in turn, stimulate
angiogenesis in the border zone post-MI. Increased myocar-
dial angiogenesis after stem and progenitor cell transfer has
been postulated to improve infarct healing and energy
metabolism in the infarct border zone.97–100 Early clinical
trials suggest that intracoronary delivery of bone marrow
cells may improve LVEF recovery in patients after MI.101

More work is needed, however, to identify the most suitable
cell types and application methods and to define the
impact of cell therapy on clinical endpoints and other
indices of LV remodelling, i.e. LV end-diastolic volumes. Fur-
thermore, other delivery strategies for pro-angiogenic
factors after MI and in CHF need to be explored.

4. Conclusions

LV remodelling remains an important treatment target in
patients after MI or with CHF. While the beneficial effects
of ACE inhibition, AT1-receptor blocker therapy, and
b-blocker therapy on LV remodelling are established,
adverse LV remodelling is still observed in a substantial pro-
portion of patients and is related to an adverse prognosis.
These observations call for novel therapeutic strategies.
Based on recent insights into the mechanisms leading to LV
remodelling, novel therapeutic targets have been proposed,
e.g. eNOS-derived NO availability, activation of cardiac and
leukocyte-dependent oxidant stress pathways, and acti-
vation of inflammatory pathways and MMPs. It is hoped
that these experimental observations will eventually be
translated into new and successful treatment strategies in
the clinical arena.
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