23 research outputs found

    Impact of Chromosomal Rearrangements on the Interpretation of Lupin Karyotype Evolution

    Get PDF
    Plant genome evolution can be very complex and challenging to describe, even within a genus. Mechanisms that underlie genome variation are complex and can include whole-genome duplications, gene duplication and/or loss, and, importantly, multiple chromosomal rearrangements. Lupins (Lupinus) diverged from other legumes approximately 60 mya. In contrast to New World lupins, Old World lupins show high variability not only for chromosome numbers (2n = 32–52), but also for the basic chromosome number (x = 5–9, 13) and genome size. The evolutionary basis that underlies the karyotype evolution in lupins remains unknown, as it has so far been impossible to identify individual chromosomes. To shed light on chromosome changes and evolution, we used comparative chromosome mapping among 11 Old World lupins, with Lupinus angustifolius as the reference species. We applied set of L. angustifolius-derived bacterial artificial chromosome clones for fluorescence in situ hybridization. We demonstrate that chromosome variations in the species analyzed might have arisen from multiple changes in chromosome structure and number. We hypothesize about lupin karyotype evolution through polyploidy and subsequent aneuploidy. Additionally, we have established a cytogenomic map of L. angustifolius along with chromosome markers that can be used for related species to further improve comparative studies of crops and wild lupins

    Plant expression, lyophilisation and storage of HBV medium and large surface antigens for a prototype oral vaccine formulation

    Get PDF
    Current immunisation programmes against hepatitis B virus (HBV) increasingly often involve novel tri-component vaccines containing—together with the small (S-HBsAg)—also medium and large surface antigens of HBV (M- and L-HBsAg). Plants producing all HBsAg proteins can be a source of components for a potential oral ‘triple’ anti-HBV vaccine. The objective of the presented research was to study the potential of M/L-HBsAg expression in leaf tissue and conditions of its processing for a prototype oral vaccine. Tobacco and lettuce carrying M- or L-HBsAg genes and resistant to the herbicide glufosinate were engineered and integration of the transgenes was verified by PCR and Southern hybridizations. M- and L-HBsAg expression was confirmed by Western blot and assayed by ELISA at the level of micrograms per g of fresh weight. The antigens displayed a common S domain and characteristic domains preS2 and preS1 and were assembled into virus-like particles (VLPs). Leaf tissues containing M- and L-HBsAg were lyophilised to produce a starting material of an orally administered vaccine formula. The antigens were distinctly sensitive to freeze-drying conditions and storage temperature, in the aspect of stability of S and preS domains and formation of multimeric particles. Efficiency of lyophilisation and storage depended also on the initial antigen content in plant tissue, yet M-HBsAg appeared to be approximately 1.5–2 times more stable than L-HBsAg. The results of the study provide indications concerning the preparation of two other constituents, next to S-HBsAg, for a plant-derived prototype oral tri-component vaccine against hepatitis B

    Izolacja DNA

    No full text

    Candidate Domestication-Related Genes Revealed by Expression Quantitative Trait Loci Mapping of Narrow-Leafed Lupin (Lupinus angustifolius L.)

    No full text
    The last century has witnessed rapid domestication of the narrow-leafed lupin (Lupinus angustifolius L.) as a grain legume crop, exploiting discovered alleles conferring low-alkaloid content (iucundus), vernalization independence (Ku and Julius), and reduced pod shattering (lentus and tardus). In this study, a L. angustifolius mapping population was subjected to massive analysis of cDNA ends (MACE). The MACE yielded 4185 single nucleotide polymorphism (SNP) markers for linkage map improvement and 30,595 transcriptomic profiles for expression quantitative trait loci (eQTL) mapping. The eQTL highlighted a high number of cis- and trans-regulated alkaloid biosynthesis genes with gene expression orchestrated by a regulatory agent localized at iucundus locus, supporting the concept that ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR RAP2-7 may control low-alkaloid phenotype. The analysis of Ku shed light on the vernalization response via FLOWERING LOCUS T and FD regulon in L. angustifolius, providing transcriptomic evidence for the contribution of several genes acting in C-repeat binding factor (CBF) cold responsiveness and in UDP-glycosyltransferases pathways. Research on lentus selected a DUF1218 domain protein as a candidate gene controlling the orientation of the sclerified endocarp and a homolog of DETOXIFICATION14 for purplish hue of young pods. An ABCG transporter was identified as a hypothetical contributor to sclerenchyma fortification underlying tardus phenotype
    corecore