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Abstract: Plant genome evolution can be very complex and challenging to describe, even within a 

genus. Mechanisms that underlie genome variation are complex and can include whole-genome 

duplications, gene duplication and/or loss, and, importantly, multiple chromosomal 

rearrangements. Lupins (Lupinus) diverged from other legumes approximately 60 mya. In contrast 

to New World lupins, Old World lupins show high variability not only for chromosome numbers 

(2n = 32–52), but also for the basic chromosome number (x = 5–9, 13) and genome size. The 

evolutionary basis that underlies the karyotype evolution in lupins remains unknown, as it has so 

far been impossible to identify individual chromosomes. To shed light on chromosome changes and 

evolution, we used comparative chromosome mapping among 11 Old World lupins, with Lupinus 

angustifolius as the reference species. We applied set of L. angustifolius-derived bacterial artificial 

chromosome clones for fluorescence in situ hybridization. We demonstrate that chromosome 

variations in the species analyzed might have arisen from multiple changes in chromosome 

structure and number. We hypothesize about lupin karyotype evolution through polyploidy and 

subsequent aneuploidy. Additionally, we have established a cytogenomic map of L. angustifolius 

along with chromosome markers that can be used for related species to further improve 

comparative studies of crops and wild lupins. 

Keywords: Lupinus; lupin; chromosome; pseudomolecule; cytogenomic map; karyotype structure; 

evolution; BAC; FISH; comparative chromosome mapping 

 

1. Introduction 

Knowing how genomes are organized and distinct at the chromosomal level is fundamental for 

an understanding of the dynamics of chromosomal structure and karyotypes [1]. Chromosome 

number variations have been studied as an intermediary of karyotype changes. Traditionally, 

chromosome numbers, genome size, and the number of nucleolar organizers have been used to 

establish the basis for further studies of chromosome organization, especially when data on whole 

genome sequences or differential chromosome markers are not available. Progress in molecular 

cytogenetics and the availability of bacterial artificial chromosome (BAC) libraries have advanced 

plant genome studies [2], to provide more precise identification of karyotypes and to subsequently 
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integrate these with linkage groups [3,4]. Whole-genome sequencing was a breakthrough that has 

improved the quality and accuracy of genome maps, and has made it possible to assign chromosomes 

to pseudomolecules in various plant species [5–7]. Importantly, reference karyotypes have become a 

key tool for comparative chromosome mapping, e.g., among the legume genera Arachis [8], Glycine 

[9], and Phaseolus [10,11], as well as the genera of other families, including Solanum [12] and Daucus 

[13].  

Plants of the Lupinus genus (lupins; Genisteae tribe) belong to the important grain legumes, 

along with those of the genera Glycine, Phaseolus, and Arachis. Lupins are a source of valuable protein, 

oils, and bioactive compounds, such as alkaloids, isoflavones, and oligosaccharides. Additionally, 

lupins contribute to the productivity and quality of agricultural soils, and thus they have substantial 

roles in crop rotation. The Lupinus genus consists of approximately 270 species, which can be divided 

into two groups, known as Old World lupins (OWLs) and New World lupins (NWLs). OWLs 

comprise 12 autogamous species, which include three crops: Lupinus angustifolius (narrow-leafed 

lupin), Lupinus albus (white lupin), and Lupinus luteus (yellow lupin) [14]. The OWLs are 

geographically and phenotypically diverse, and they are mainly represented in Mediterranean 

regions and North Africa, which highlights their adaptation to different environments. Based on their 

seed coat structure, the OWLs are traditionally divided into two groups. The first group includes the 

smooth-seeded lupins, which is divided into four sections: Angustifolius (2n = 40), Luteus (2n = 52), 

Albus (2n = 50), and Micranthus (2n = 52). These are distributed around the Mediterranean basin, and 

there are major genetic barriers between most species. Phylogenetic systematics using internal 

transcribed spacer data have shown that smooth-seeded species include at least two lineages, i.e., 

Angustifolius–Luteus and Micranthus–Albus [15]. The second group of the OWLs comprises the rough-

seeded lupins, which have been divided into three sections: Pilosus (2n = 42), Atlanticus (2n = 32, 36, 

38) and Princei (2n = 38). These are eco-geographically isolated and are mainly in North Africa.  

At the chromosome level, OWLs are a complex group within legumes. They have chromosome 

numbers that range from 2n = 32 to 2n = 52, and a varied basic chromosome number x = 5 − 9, 13 [16], 

which indicates an obscure evolutionary pattern, as has been exemplified across L. angustifolius and 

Lupinus cryptanthus, Lupinus micranthus, Lupinus pilosus, and Lupinus cosentinii [17]. Recently, 

differences in chromatin modification and DNA methylation have also highlighted variations in the 

organization of the lupin genomes [18]. Progress in genetic and molecular studies in lupins has 

mostly arisen from crops, and has been linked, for example, with the development of genetic maps 

[19], whole-genome sequencing [20,21], and transcriptomic analyses [22]. Of note, L. angustifolius and 

its genomic resources is considered as the reference species in comparative studies. The assignment 

of chromosomes to linkage groups of L. angustifolius [23,24] established the starting point for the 

tracking of cytogenetic differences among crops and wild lupins.  

Here, we present the first complete genome-based cytogenetic map of L. angustifolius. For this 

purpose, we assigned the reference karyotype [24] to its whole genome assembly [20]. We explored 

the possibilities of its application in lupin genome studies by providing the first chromosome markers 

for related species. Finally, we report on a first global view of the chromosome structure in lupin 

karyotypes and assume their complex patterns of evolutionary changes. A considerable part of this 

study was addressed to the fundamental question of whether a common model of lupin karyotype 

evolution exists, according to the most likely explanations of the observations. Our data provide a 

foundation for lupin chromosome and karyotype evolution studies. 

2. Materials and Methods 

2.1. Plant Material 

Twelve species of both crop and wild lupins were used in this study: The crop L. angustifolius 

and its wild botanical form L. cryptanthus; the crop L. luteus and Lupinus hispanicus; the crop L. albus 

and its wild form Lupinus graecus; and six other wild lupins. Their names, basic taxonomy, and 

cytogenetic characteristics are provided in Table 1. Their origins and geographic distributions are 

shown in Supplementary Figure S1. 
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The seeds were germinated in Petri dishes at 25 °C, to obtain root tips that were suitable for 

mitotic chromosome preparations. 

Table 1. General characteristics of the Lupinus species used in this study. 

Group Section Species Accession 
Chromosome 

Number (2n) 

Genome Size 

(pg/2C DNA) 

Smooth-

seeded 
Angustifolius L. angustifolius 

cv. ‘Sonet’ 

* 
40 1.89 

  L. cryptanthus 96361 * 40 1.86 

 Luteus L. luteus 
cv. ‘Talar’ 

* 
52 2.44 

  L. hispanicus 96385 * 52 2.15 

 Albus L. albus 
cv. ‘Boros’ 

* 
50 1.16 

  L. graecus 95601 * 50 1.13 

 Micranthus L. micranthus 98552 * 52 0.98 

Rough-

seeded 
Atlanticus L. atlanticus 98401 * 38 1.61 

  L. digitatus 
PI 660697 

** 
36 1.37 

  L. cosentinii 98452 * 32 1.42 

 Pilosus L. pilosus 98653 * 42 1.36 

  L. palaestinus 98605 * 42 1.39 

* Polish Lupinus Gene Bank, Breeding Station Wiatrowo, Poznan Plant Breeders Ltd., Poland ** US 

Department of Agriculture, USA. 

2.2. BAC DNA Isolation, Sequencing, and Labeling 

BAC clones were originated from the genomic BAC library constructed by Kasprzak et al. [25]. 

The BACs used for assignment of linkage groups to chromosome of L. angustifolius [23,24] and other 

available in NCBI database are listed in Table 2 (Results section). BAC DNA was isolated using 

standard miniprep kits (QIAprep Spin; Qiagen, Hilden, Germany). BAC DNA sequencing was 

carried out using the long-read sequencing (PacBio), as described by Susek et al. [17], or by the next-

generation sequencing (NGS) approach (Illumina) [24]. Whole BAC sequences (WBS) were imported 

into Geneious 8.1.6. (Biomatters, Ltd., Auckland, New Zealand) and aligned to the L. angustifolius 

pseudomolecules and/or scaffolds of Hane et al. [20]. The BAC-end sequences (BES) were also used 

when the WBS were not available. For generation of the fluorescence in situ hybridization (FISH) 

probe, BAC DNA was labeled by nick translation (Sigma-Aldrich, St. Louis, MI, USA), either with 

digoxygenin-11-dUTP (Sigma-Aldrich), or with tetramethylrhodamine-5-dUTP (Sigma-Aldrich). 

2.3. Fluorescence In Situ Hybridization 

Mitotic chromosome preparations and FISH using the BAC-based probes (BAC-FISH) were 

carried out according to Lesniewska et al. [23] for L. angustifolius, and as described by Susek et al. [17] 

for other lupins, with minor modifications. Root tips were treated in an enzyme solution of 40% (v/v) 

pectinase (Sigma-Aldrich), 3% (w/v) cellulase (Sigma-Aldrich), and 1.5% (w/v) cellulase ‘Onozuka R-

10’ (Serva, Heidelberg, Germany), at 37 °C for 150 min for the primary roots of the crops, and for 60 

min to 90 min for both the primary and the lateral roots of the wild lupins. The same set of BAC 

markers was used for all of the species in a given experiment, to maintain the same conditions of the 

BAC-FISH reaction. To localize the BAC-FISH signals, the chromosomes were counterstained with 

4′,6-diamidino-2-phenylindole (DAPI) in Vectashield (Vector Laboratories, Burlingame, CA, USA). 
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2.4. Microscopy, Image Acquisition and Processing, Data Presentation 

The FISH data were analyzed using an epifluorescence microscope (BX-60; Olympus, Tokyo, 

Japan). Images were acquired with a high-sensitivity monochromatic camera (Ikegami 47E), 

separately for each of three fluorochromes, using the appropriate excitation and emission filters. Grey 

images were pseudocolored (Wasabi; Hamamatsu Photonics v. 1.1.) and superimposed (Micrografx; 

Corel Picture Publisher 10.1 software). At least five images were analyzed to confirm the intensities 

and chromosomal distributions of the individual BAC-FISH signals. All of the lupin karyotypes were 

visualised (ChromDraw package; included in Bioconductor R packages; 

www.bioconductor.org/packages), as described by Janečka and Lysak [26]. 

3. Results 

3.1. Assignment of Chromosomes to Pseudomolecules of the L. angustifolius Genome 

Physical mapping of chromosomes is a robust and efficient way for comparative studies of 

karyotype structure and evolution based on the synteny and collinearity of related genomes. As a 

framework, we used the cytogenetic map of L. angustifolius that was developed by Wyrwa et al. [24] 

to assign the L. angustifolius chromosomes to pseudomolecules [20]. Different abbreviations are used 

for chromosome names in the literature, such as LANG [23] and Lang [24], while both linkage groups 

and pseudomolecules are named as NLL. Here, for clarity, we use the following abbreviations: Lang 

for L. angustifolius chromosomes, and NLL for pseudomolecules. As a consequence of this 

assignment, we propose to name the chromosomes and pseudomolecules as Lang01 to Lang20.  

We selected 53 BAC clone-based cytogenetic markers of L. angustifolius that were previously 

generated by Lesniewska et al. [23] and Wyrwa et al. [24] to assign the chromosomes to linkage 

groups of L. angustifolius (see detailed data in Supplementary Table S1). Among these, there were 

some BAC clones (i.e., 1M23, 2B03, 8C03) that remained unassigned. We sequenced 22 BACs, as 18 

by long-read sequencing (PacBio) and four with an NGS platform (Illumina). These resources were 

used to accurately integrate the chromosomes and pseudomolecules in the Lang vs. NLL map of L. 

angustifolius. This set of new WBS, along with other lupin BAC sequences available at the NCBI 

database, established efficient tools for reciprocal integration of chromosomes and pseudomolecules 

(Table 2). We assigned Lang vs. NLL using varied numbers of WBS for particular chromosomes: Five 

WBS for Lang06; four for Lang 08 and 13; three for Lang 03, 11, 17, and 20; and two for Lang 05, 10, 

14, and 19. For Lang 01, 02, 04, 07, 09, 12, 15, 16, and 18, we used one WBS. In the cases where WBS 

and/or BES provided misassembled information between chromosomes and pseudomolecules, we 

used BAC-FISH to integrate the L. angustifolius chromosomes and pseudomolecules. As a 

consequence, seven chromosomes were re-assigned (Table 2, Lang 01, 07, 08, 13, 14, 19, 20). 
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Table 2. Bacterial artificial chromosome (BAC) clones used for the chromosome and pseudomolecule integration in L. angustifolius. 

Assignment Chromosome (Lang) Pseudomolecule (NLL) Pseudomolecule (bp) BAC ID BAC Data GenBank Accession 

Lang01 01 01 1..36 457 581 43C18 WBS MK650088 
  13     

Lang02 02 02 1..24 697 652 120E23 WBS MK650090 

Lang03 03 03 1..30 153 019 84A06 WBS MK650076 
 03 03  57J20 WBS HE804810.1 
 03 03  28O01 3′ STS GF112056.1 
 03 03  137N08 WBS MK650084 

Lang04 04 04 1..27 333 975 47P22 WBS MK650072 
 04 04  131K22 5′ BES KU678257.1 
 04 04   3′ BES KU678256.1 

Lang05 
05 05 

1..26376911 
131K15 WBS MK650081 

05 05 4G15 WBS HE804808.1 

Lang06 06 06 1..33 111 450 44J16 WBS KX298066 
 06 06  76K16 WBS MK650073 
 06 06  80B11 WBS HE804812.1 
 06 06  51D03 WBS MK650071 
 06 06  127N17 WBS KU678223.1 

Lang07 Not assigned 07 1..19 782 170 2B03 WBS KX298069 

Lang08 08 17 1...25 521 646 84D22 WBS KX298065 
 08 17  111B08 WBS KX298071 
 08 17  142C04 WBS KX298073 
 08 17  142D13 WBS KX298074 

Lang09 09 09 1..21 753 712 15P08 5′ BES AB809174.1 
  09   3′ BES AB809173.1 
 09 09  59J08 WBS MK650082 

Lang10 10 10 1...16 341 955 77C13 WBS MK650077 
 10 10  57K22 WBS MK650069 

Lang11 11 11 1..35 963 958 97D16 WBS MK650085 
 11 11  36L23 WBS MK650075 
 11 11  20A06 WBS MK650080 
 11 11  60F02 WBS MK045265 

Lang12 12 12 1..19 065 701 94P05 WBS MK650086 

Lang13 Not analyzed Many 1..17 820 680 11G20 WBS MK650079 
 Not assigned 13  8C03 WBS KX298063 
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 Not analyzed 13  51F15 WBS MK045272 

Lang14 14 03 1...16 251 777 138N02 WBS MK650089 
 14 14  115C21 5′ BES HR864196.1 
  12   3′ BES AB809318.1 
 Not analyzed 14  9K06 WBS MK045273 

Lang15 15 15 1...20 964 703 5L11 3′ STS GF112057.1 
 15   134F01 WBS MK650070 

Lang16 16 Many 1..20 786 881 115G22 5′ BES AB811328.1 
  Many   3′ BES AB811323.1 
 16 Many  112E01 5′ BES AB809308.1 
  Many   3′ BES AB809307.1 
 16 Many  72O21 5′ BES AB809272.1 
 16 20  8A03 5′ BES AB809167.1 
  Many   3′ BES AB809166.1 
 16 16  87N22 WBS MK650087 

Lang17 17 17 1..21 299 880 111G03 WBS KX298064 
 17 17  136C16 WBS KX298072 
 17 17  3B18 WBS KX298070 

Lang18 18 18 1..16 588 007 68H10 WBS KU678221 

Lang19 19 19 1..18 159 812 67C07 WBS MK650078 
 19 19  83F23 5′ BES KU678304.1 
  19   3′ BES KU678303.1 
 07 19  74I10 WBS MK650074 

Lang20 20 20 1..21 988 590 17B07 WBS HF937076.1 
 20 20  83C06 WBS MK650083 
 Cluster-2 20  1M23 WBS KX298067 

BAC: bacterial artificial chromosome; BES: BAC-end sequences; WBS: whole BAC sequences; in bold when provided in this study. Lang, NLL, results of 

chromosome, and pseudomolecule integration, respectively, with reassigned chromosome numbers in italics. 
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The chromosome Lang01 was verified by BAC 43C18, although WBS 43C18 was identified in 

both pseudomolecules NLL01 and NLL13. BAC-FISH mapping precluded assignment to NLL13 

(Figure 1A, Table 2). Interestingly, Lang07 was previously marked by the clone 74I10, and has now 

been anchored by BAC 2B03 on a different chromosome to BAC 74I10 (Figure 1B). Additionally, the 

alignment of 74I10 WBS to the whole genome sequence, along with BAC-FISH mapping, defined this 

clone as a marker for Lang19 (Figure 1C). Lang19 was described by two other BACs, 67C07 and 83F23, 

with the WBS of 67C07 positioned in NLL19 (Table 2). Unexpectedly, four BACs (84D22, 111B08, 

142C04, 142D13) were assigned to Lang08, even though they all corresponded to NLL17 (Table 2). 

Furthermore, we verified that BACs 11G20, 8C03, and 51F15 belong to the same chromosome Lang13, 

although 11G20 WBS was aligned to many NLLs (Table 2). BAC-FISH using both clones 11G20 and 

51F15 (Figure 1D) showed that these BACs belong to the same chromosome Lang13. Moreover, 

Lang13 was enriched with the marker 8C03, assigned to chromosome Lang13 (Figure 1E). Similar to 

Lang13, Lang14 with clones 138N02, 115C21, and 9K06 illustrated some miss-mapping, such as the 

alignment of 5′BES and 3′BES of 115C21 to two different pseudomolecules, Lang14 and Lang12, 

respectively (Table 2). Nevertheless, BAC-FISH with 9K06 and 115C21 confirmed that Lang14 

corresponded to NLL14 (not shown). Within Lang16, five BACs were identified (115G22, 112E01, 

72O21, 8A03, 87N22) in various NLLs based on BESs (Table 2). However, the whole sequence of BAC 

87N22 was in NLL16. Considering that all of these BACs were mapped to the same chromosome by 

Wyrwa et al. [24], all five BACs were linked to the same chromosome, Lang16. Our integrated studies 

also led to the assignment of clone 1M23 from cluster-2 to pseudomolecule NLL20 (Table 2), and to 

its colocalization with BAC 17B07, which is a marker of chromosome Lang20 (Figure 1F). Finally, 13 

chromosomes (i.e., Lang02–06, Lang09–12, Lang15, Lang16–18) were assigned to pseudomolecules of 

L. angustifolius, in agreement with former chromosome assignments to linkage groups [23,24]. Finally, 

combined analyses of multiple BAC-FISH reactions, BAC sequencing, and whole genome assignment 

led us to construct the first comprehensive ideogram of the L. angustifolius chromosomes (Figure 2).  
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Figure 1. Fluorescence in situ hybridization verification of BAC localization in chromosomes of L. 

angustifolius. (A) BAC 43C18 (red signals)—Lang 01 and BAC 51F15 (green signals)—Lang 13. (B) BAC 

2B03 (red)—Lang07 and 74I10 (green)—Lang19. (C) 67C07 (red)—Lang19 and 74I10 (green)—Lang19. (D) 

BAC 11G20 (red)—Lang13 and BAC 51F15 (green)—Lang13. (E) BAC 51F15 (red)—Lang13 and 8C03 

(green)—Lang13. (F) 17B07 (red)—Lang20 and 1M23 (green)—Lang20. Chromosomes were stained with 

DAPI (blue). Scale bars = 5 µm. 

 

Figure 2. Ideogram of L. angustifolius chromosomes (Lang01 to Lang20). The karyotype was created 

based on reciprocal assignment to the whole genome of L. angustifolius. The BAC clones are indicated 

by rectangles with a unique color, according to their position in the genome. The overlapping 

rectangles are shown overlapping BAC positions in L. angustifolius. All of the chromosomes are drawn 

to scale, whereby the Mb units refer to the L. angustifolius genome sequence. 
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3.2. Chromosome Variation in Lupins 

The ideogram obtained for the L. angustifolius chromosomes (Figure 2) provides the foundation 

for comparative cytogenomic mapping among lupins.  

Such chromosome analyses have been conducted using heterologous BAC-FISH mapping among 11 

species of the genus: L. cryptanthus (2n = 40, Lcry), L. luteus (2n = 52, Llut), L. hispanicus (2n = 52, Lhis), 

L. albus (2n = 50, Lalb), L. graecus (2n = 50, Lgra), L. micranthus (2n = 52, Lmic), L. atlanticus (2n = 38, 

Latl), Lupinus digitatus (2n = 36, Ldig), L. cosentinii (2n = 32, Lcos), L. pilosus (2n = 42, Lpil), and Lupinus 

palaestinus (2n = 42, Lpal). We comparatively mapped 52 BAC-clone-based chromosome markers of 

L. angustifolius karyotype to provide cytogenetic landmarks for related lupins. These BACs were 

either mapped to one unique locus (so-called ‘single’ BAC; indicated as S here) or to many loci along 

the chromosomes of the analyzed lupins (referred to as ‘repetitive’ BAC; indicated as R here). 

Particular clones were mapped either as S or R markers; e.g., clone 84A06 was mapped to one locus 

in L. cryptanthus, L. albus, L. graecus, L. micranthus, L. cosentinii, L. pilosus, and L. palaestinus, but had 

many loci in the remaining lupins. Their FISH patterns are summarized in Table 3. Among the 52 

clones, we have provided a set of 41 markers for Lcry, 25 for Llut, 19 for Lhis, 25 for Lalb, 24 for Lgra, 

26 for Lmic, 25 for Latl, 19 for Ldig, 22 for Lcos, 27 for Lpil, and 24 for Lpal (Figure 3). Eight BACs 

(i.e., 80B11, 59J08, 115G22, 112E01, 72O21, 8A03, 136C16, 17B07) were shown to be unique markers 

for all lupins.  

 

Figure 3. Representation of ‘single’ (S) and ‘repetitive’ (R) BAC clones in 11 lupin genomes. Lang, L. 

angustifolius (reference species). Lcry, L. cryptanthus. Llut, L. luteus. Lhis, L. hispanicus. Lalb, L. albus. 

Lgra, L. graecus. Lmic, L. micranthus. Latl, L. atlanticus. Ldig, L. digitatus. Lcos, L. cosentini. Lpil, L. 

pilosus. Lpal, L. palaestinus. N/D, not detected. 

The set of markers for each species led us to identify chromosomes in the 11 OWLs analyzed 

(Supplementary Figures S2–S12). These had varied numbers of Lang-like chromosomes—19 in Lpil 

(Supplementary Figure S11); 18 in Lmic (Supplementary Figure S7); 17 in Lcry (Supplementary 

Figure S2); 16 in Llut (Supplementary Figure S3) and Lcos (Supplementary Figure S10); 14 in Lalb 

(Supplementary Figure S5), Lgra (Supplementary Figure S6), and Lpal (Supplementary Figure S12); 

13 in Latl (Supplementary Figure S8); 12 in Ldig (Supplementary Figure S9); and 11 in Lhis 

(Supplementary Figure S4). Due to no reference information about other lupin genomes, the 

chromosome sizes given here were based on L. angustifolius. Also, the chromosomes of the lupins 

studied were numbered according to the chromosomes of the reference species; e.g., Lcry02 

corresponds to Lang02, and so on. 
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The ‘repetitive’ BACs were excluded from the chromosomal marker analyses, although they 

broaden our view about chromosome variations in lupins. Combining the S and R clones, we 

illustrated Lang-like chromosomes in related species, to identify different levels of synteny between 

the lupins (Supplementary Figure S13). We identified 11 R clones for Lcry, 27 for Llut, 33 for Lhis, 26 

for Lalb, 27 for Lgra, 25 for Lmic, 27 for Latl, 30 for Ldig, 29 for Lcos, 24 for Lpil, and 27 for Lpal 

(Figure 3). Three clones were not detected in Ldig, and another one was not identified in Lalb, Lgra, 

Lmuc, Lcos, Lpil, and Lpal (Table 3). Additionally, we estimated that eight clones (43C18, 28O01, 

15P08, 11G20, 115C21, 5L11, 87N22, 68H10) hybridized to many loci in the chromosomes of all of the 

lupins analyzed. On the other hand, all of the clones from Lang 05, 11, and 13 were ‘repetitive’ only 

for Lhis, Ldig, and Lpal, respectively. 

Based on the FISH patterns for both ‘single’ and ‘repetitive’ BACs, we distinguished four types 

of Lang-like chromosomes in related species. The first reflects the most varied BAC-FISH pattern, as 

Lang 03, 04, 06, 08, 10, 11, 13, 17, 19, and 20 illustrated that BACs from particular chromosomes were 

localized differently in most species. The second type was recognized as the most conserved pattern, 

e.g., two clones of Lang05 were localized as S in the chromosomes across all species, with the 

exception of L. hispanicus (for an example of comparative BAC-FISH mapping, see Figure 4). 

Moreover, BACs 15P08 and 59J08 from Lang09 were mapped as R and S in all of the lupins. Also, 

clones of Lang16 were mapped with the same pattern in all of the lupins. The third type comprised 

five Lang-like chromosomes, e.g., Lang02, where BAC 120E23 was mapped as S in most lupin species, 

except for L. albus, L. graecus, and L. digitatus, and Lang07, where the clone 2B03 was mapped as R 

only in L. micranthus and L. digitatus. Additionally, Lang14 and Lang15 showed two kinds of BAC-

FISH patterns. The Lang12-like chromosomes were also included with this type, as the clone 94P05 

was mapped as R in seven species, with the exceptions of L. luteus, L. albus, L. graecus, and L. digitatus. 

In Lang14, we recognized three clones as R in five species. In the other five lupins, two clones 

(138N02, 115C21) were mapped as R, while BAC 9K06 was mapped as S. Exceptionally, for L. 

cryptanthus, 138N02 and 9K06 were mapped as S, but BAC 115C21 hybridized as R. The same pattern 

was also noted for Lang15, where both clones of this chromosome were R in six lupins, but clone 5L11 

and BAC 134F01 were seen as R and S, respectively, in five species. The last type of chromosomes 

contains the clones represented as ‘repetitive’ in Lang01-like and Lang18-like chromosomes in all 

species. 

Surprisingly, Lang17 was covered by BAC markers that all were ‘single’ in the lupins analyzed, 

with two exceptions as L. cryptanthus and L. palaestinus, where BACs 111G03 and 3B118, respectively, 

were mapped as R. We also found that ‘repetitive’ clones enabled us to distinguish Lang10-like 

chromosome between crop lupin and its wild form, e.g., marker 77C13 mapped as S in Lalb and R in 

Lgra. This was similar to the Lang19-like chromosomes of Llut and Lhis, where clone 83F23 was 

mapped as R and S, respectively. Interestingly, two other clones from Lang19-like chromosomes were 

mapped with the same pattern (Table 3).  
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Figure 4. Identification of the Lang05-like chromosome in related lupins using fluorescence in situ 

hybridization (FISH) with BAC 131K22 (red signals) and BAC 4G15 (green signals). (A) L. albus. (B) 

L. pilosus. (C) L. palaestinus. (D) L. atlanticus. (E) L. digitatus. (F) L. cosentinii. Chromosomes were stained 

with DAPI (blue). Scale bars = 5 µm. 
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Table 3. Characteristics and localizations of the BAC clones used for the comparative BAC-FISH. 

No. BAC ID Lcry Llut Lhis Lalb Lgra Lmic Latl Ldig Lcos Lpil Lpal  
Lang01 1-R 1-R 1-R 1-R 1-R 1-R 1-R 1-R 1-R 1-R 1-R 

1 43C18  R R R R R R R R R R R  
Lang02 S S S 2-R 2-R S S 2-R S S S 

2 120E23 S S S R R S S R S S S  
Lang03 3=4=6; 5-R 3-4-5-6-R 3-4-5-6-R 3=4=6; 5-R 3=4; 5-6-R 3=6; 4-5-R 3-4-5-6-R 3-5-6-R 3=6; 4-5-R 3=6; 4-5-R 3=4=6; 5-R 

3 84A06 S R R S S S R R S S S 

4 57J20 S R R S S R R N/D R R S 

5 28O01 R R R R R R R R R R R 

6 137N08 S R R S R S R R S S S  
Lang04 7=8 7-8-R 7=8 7; 8-R 7=8 7; 8-R 7-8-R 7-8-R 7; 8-R 7; 8-R 7=8 

7 47P22 S R S S S S R R S S S 

8 131K22 S R S R S R R R R R S  
Lang05 9=10 9=10 9-10-R 9=10 9=10 9=10 9=10 9=10 9=10 9=10 9=10 

9 131K15 S S R S S S S S S S S 

10 4G15 S S R S S S S S S S S  
Lang06 11=12=13=15

=16 

11=13 #14; 

12-15-R 

13; 11-12-

14-15-R 

12=13 # 14; 

11-15-R 

12=13 # 14;  

11-15-R 

12=13 # 

14=15 

11=12=13=

15; 14-R 

12=13; 11-

14-15-R 

13; 12-14-

15-R 

12 # 13 # 

14=15 

12=13#12'; 

11-14-15-R 

11 44J16 S S R R R N/D S R N/D N/D R 

12 76K16 S R R S S S S S R S S, S' 

13 80B11 S S S S S S S S S S S 

14 51D03 S S R S S S R R R S R 

15 127N17 S R R R N/D S S R R S R  
Lang07 S S S S S 16-R S 16-R S S S 

16 2B03 S S S S S R S R S S S  
Lang08 17=18=19=20 18=20; 17-

19-R 

17-18-19-

20-R 

17-18-19-20-

R 

17-18-19-

20-R 

17=19 # 18; 

20-R 

17-18-19-

20-R 

17-18-19-

20-R 

17=18; 19-

20-R 

17=18; 19-

20-R 

17-18-19-20-

R 

17 84D22 S R R R R S R R S S R 

18 111B08 S S R R R S R R S S R 

19 142C04 S R R R R S R R R R R 

20 142D13 S S R R R R R R R R R 
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Lang09 22; 21-R 22; 21-R 22; 21-R 22; 21-R 22; 21-R 22; 21-R 22; 21-R 22; 21-R 22; 21-R 22; 21-R 22; 21-R 

21 15P08 R R R R R R R R R R R 

22 59J08 S S S S S S S S S S S  
Lang10 23=24 23; 24-R 23-24-R 23; 24-R 23-24-R 23=24 23; 24-R 23; 24-R 23-24-R 23-24-R 23-24-R 

23 77C13 S S R S R S S S R R R 

24 57K22 S R R R R S R R R R R  
Lang11 25=26=27=28 26; 25-27-

28-R 

25=26; 27-

28-R 

25=27; 26-28-

R 

25=26; 27-

28-R 

26; 25-27-

28-R 

25; 26-27-

28-R 

26-27-28-

R 

26; 25-27-

28-R 

26; 25-27-

28-R 

25; 27-28-R 

25 97D16 S R S S S R S N/D R R S 

26 36L23 S S S R S S R R S S N/D 

27 20A06 S R R S R R R R R R R 

28 60F02 S R R R R R R R R R R  
Lang12 29-R S 29-R S S 29-R 29-R 29-R 29-R 29-R S 

29 94P05 R S R S S R R R R R S  
Lang13 31=32; 30-R 32 # 32'; 30-

31-R 

32; 30-31-R 32; 30-31-R 32; 30-31-R 31; 30-32-R 32; 30-31-

R 

32; 30-31-

R 

32; 30-31-R 32; 30-31-R 30-31-32-R 

30 11G20 R R R R R R R R R R R 

31 8C03 S R R R R S R N/D R R R 

32 51F15 S S, S' S S S R S S S S R  
Lang14 33=35; 34-R 33-34-35-R 33-34-35-R 33-34-35-R 35; 33-34-R 35; 33-34-R 35; 33-34-

R 

33-34-35-

R 

35; 33-34-R 35; 33-34-R 33-34-35-R 

33 138N02 S R R R R R R R R R R 

34 115C21 R R R R R R R R R R R 

35 9K06 S R R R S S S R S S R  
Lang15 37; 36-R 36-37-R 36-37-R 36-37-R 36-37-R 37; 36-R 36-37-R 37; 36-R 37; 36-R 37; 36-R 36-37-R 

36 5L11 R R R R R R R R R R R 

37 134F01 S R R R R S R S S S R  
Lang16 38=39=40=41

; 42-R 

38=39=40=4

1; 42-R 

38=39=40=4

1; 42-R 

38=39=40=41; 

42-R 

38=39=40=4

1; 42-R 

38=39=40=4

1; 42-R 

38=39=40=

41; 42-R 

38=39=40=

41; 42-R 

38=39=40=4

1; 42-R 

38=39=40=4

1; 42-R 

38=39=40=41

; 42-R 

38 115G22 S S S S S S S S S S S 

39 112E01 S S S S S S S S S S S 

40 72O21 S S S S S S S S S S S 

41 8A03 S S S S S S S S S S S 

42 87N22 R R R R R R R R R R R 
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Lang17 43=45; 44-R 43=44=45 43=44=45 43=44=45 43=44=45 43=44=45 43=44=45 43 # 44=45 

# 45' 

43=44=45 43 # 44=45 44=45; 43-R 

43 3B18 S S S S S S S S S S R 

44 111G03 R S S S S S S S S S S 

45 136C16 S S S S S S S S, S' S S S  
Lang18 46-R 46-R 46-R 46-R 46-R 46-R 46-R 46-R 46-R 46-R 46-R 

46 68H10 R R R R R R R R R R R  
Lang19 47=48; 49-R 47; 48-49-R 47=48; 49-R 47-49-R 47-48-49-R 47=48; 49-R 47=48=49 47=48; 49-

R 

47=48; 49-R 47=48; 49-R 47=48; 49-R 

47 67C07 S S S R R S S S S S S 

48 83F23 S R S N/D R S S S S S S 

49 74I10  R R R R R R S R R R R  
Lang20 50=51=52 50=51=52 50; 51-52-R 50=51; 52-R 50; 51-52-R 50=51; 52-R 50=51; 52-

R 

50=51; 52-

R 

50=51; 52-R 50=51; 52-R 50=51; 52-R 

50 17B07 S S S S S S S S S S S 

51 83C06 S S R S R S S S S S S 

52 1M23 S S R R R R R R R R R 

BAC clones are individually numbered from 1 to 52 and grouped with correspondence to L. angustifolius chromosomes (Lang). There are four possible BAC-FISH 

mapping results: S, ‘single’ BAC; S, S′, BAC mapped into two loci of two chromosomes; R, ‘repetitive’ BAC; N/D, not detected. For example: (a) BAC clone no. 2—

120E23 corresponding to Lang02 is ‘single’ (S) in Lcry, but ‘repetitive’ (R) in Lalb; (b) 3=4; 5-6-R means that BACs 84A06 and 57J20 were mapped as ‘single’ in the 

same chromosome, but both clones 28O01 and 137N08 were ‘repetitive’; (c) 11=13 #14; 12-15-R means that BACs 11 and 13 were mapped in the same chromosome, 

while BAC 14 was mapped in different chromosome, both BACs 12 and 15 were ‘repetitive’. 
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3.3. Chromosome Rearrangements in Lupins 

Based on comparative analysis of chromosome variations, we distinguished two main types of 

chromosome rearrangements. The first type consists of structural changes that lead to either increases 

or decreases in chromosome numbers and involve chromosomes Lang06-like and Lang17-like. We 

tracked Lang06 based on five clones (44J16, 76K16, 80B11, 51D03, 127N17) that marked the two 

chromosome arms (here named as arm A, carrying clones 44J16, 76K16, and 80B11, and arm B, with 

BACs 51D03 and 127N17). We observed different mapping patterns (Figure 5), e.g., clones 44J16 and 

80B11 hybridized to one chromosome of L. luteus (Llut06), and BACs 76K16 and 80B11 to one 

chromosome of L. albus (Lalb06) and L. graecus (Lgra06). However, clone 51D03 was identified on 

another chromosome (additional chromosomes were marked by ′ or ′′) of these three species, referred 

to as Llut06′ (e.g., Figure 5A, Supplementary Figure S3, karyotype of Llut), Lalb06′ (Supplementary 

Figure S5, karyotype of Llalb), and Lgra06′ (Supplementary Figure S6, karyotype of Lgra). In L. 

pilosus, clones 76K16 and 80B11 were mapped in two different chromosomes (Figure 5B), as Lpil06 

and Lpil06′, respectively. In addition, clone 51D03 together with BAC 127N17 were mapped in 

different chromosomes to Lpil06 (for an example of multiple BAC-FISH reactions, see Figure 5C) and 

Lpil06’, named as Lpil06′′ (Supplementary Figure S11, karyotype of Lpil). In L. palaestinus, we 

observed two chromosomes that carried clones only from one arm of Lang06, one called Lpal06 that 

hybridized with both BACs 76K16 and 80B11, and the other called Lpal06′ that hybridized with the 

clone 76K16 (Figure 5D, Supplementary Figure S12, karyotype of Lpal). Of note, one chromosome 

arm of Lang06 was also detected in Lhis (Supplementary Figure S4, karyotype of Lhis), Ldig 

(Supplementary Figure S9, karyotype of Ldig), and Lcos (Supplementary Figure S10, karyotype of 

Lcos), with the difference that Ldig06 carried both clones 76K16 and 80B11 (Figure 5E), while Lhis06 

(e.g., Figure 5F) and Lcos06 carried only BAC 80B11. On the other hand, in L. micranthus, we 

visualized two chromosomes (Figure 6G,H) that corresponded to one chromosome Lang06. In this 

species, clones 76K16 and 80B11 and clones 51D03 and 127N17 were mapped in two chromosomes, 

Lmic06 and Lmic06′, respectively (Supplementary Figure S7, karyotype of Lmic). The entire set of 

markers of Lang06 was identified in the Lcry06 chromosome of L. cryptanthus and the Latl06 

chromosome of L. atlanticus. However, in L. atlanticus, only BAC 127N17 was mapped, which is one 

of two clones that originated from the same arm of Lang06 (Supplementary Figure S2, karyotype of 

Lcry; Supplementary Figure S8, karyotype of Latl).  

We also found that clones 111G03, 136C16, and 3B18 of Lang17 mapped differently in the lupins 

analysed. In L. digitatus, three chromosomes carried these BACs, of which chromosome Ldig17 

carried only BAC 3B18. However, clone 136C16 was mapped in another two chromosomes, in Ldig17’ 

and Lang17”, together with clone 111G03. In L. pilosus, two chromosomes were identified by clones 

that originated from Lang17. Clone 3B18 was the only one that mapped in chromosome Lpil17, while 

both 111G03 and 136C16 hybridized to chromosome Lpil17’. In L. palaestinus, one chromosome 

Lpal17 was marked by clones 111G03 and 136C16. Finally, in another seven lupin species (L. luteus, 

L. hispanicus, L. albus, L. graecus, L. micranthus, L. atlanticus, L. cosentinii), the BAC-FISH pattern of 

Lang17-like chromosome revealed its similarity to Lang17, with the exception of L. cryptanthus, where 

Lcry17 carried only two clones (3B18, 136C16). 

The second group of chromosomal rearrangements involved insertions and/or deletions, as 

reflected by the differences in the BAC presence/ absence in a given chromosome (for example, see 

Supplementary Figure S14). We found that eight chromosomes (Lang03–04, Lang08, Lang10–11, 

Lang13, Lang19–20) showed the greatest changes in the BAC-FISH patterns. All of these three clones 

(84A06, 57J20, 137N08) from Lang03 were mapped in L. cryptanthus, L. albus, and L. palaestinus, in 

agreement with L. angustifolius (Supplementary Figure S13). However, clones 84A06 and 57J20 were 

localized in the same chromosome in L. graceus (Lgra03), with 84A06 and 137N08 in L. micranthus 

(Lmic03), and L. cosentinii (Lcos03) and L. pilosus (Lpil03) (Supplementary Figure S13). In the case of 

Lang08, we determined that clone 111B08 was mapped together with either BAC 142D13 in L. luteus 

(Llut08) or 84D22 in L. cosentinii (Lcos08) and L. pilosus (Lpil08). The clones 84D22 and 142C04 were 

colocalized in one chromosome in L. micranthus (Lmic08) and L. cosentinii (Lcos08) (Supplementary 
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Figures S7, S10). Additionally, we found another chromosome (Lmic08’) that carried BAC 111B08 in 

L. micranthus (Supplementary Figure S7). Tracking the localization of clones from Lang11 in related 

OWL species, we noted that one (BAC 36L23) of four clones from chromosome Lang11 was detected 

in Lang11-like chromosomes of L. luteus, L. micranthus, L. cosentinii, and L. pilosus (Supplementary 

Figures S3, S7, S10, S11). The second, BAC 97D16, was mapped in L. atlanticus (Latl11) and L. 

palaestinus (Lpal11) (Supplementary Figures S3, S7, S10, and S11). Additionally, clone 97D16 was 

identified along with clone 36L23 in L. hispanicus and L. graecus, and with 20A06 in L. albus 

(Supplementary Figures S4–S6).  

The Lang13 chromosome was marked by three clones (11G20, 8C03, 51F15) and was visualized 

in other lupins, either by the clone 8C03 in L. micranthus (Lmic13) or 51F15 in seven other species: L. 

hispanicus, L. albus, L. graecus, L. atlanticus, L. digitatus, L. cosentinii, and L. pilosus. However, in L. luteus, 

we identified two chromosomes (Llut13, Llut13′) that carried 51F15 (Supplementary Figure S3). 

Chromosome markers of Lang19 have been used to show that BACs 83F23 and 67C07 were mapped 

in one Lang19-like chromosome in seven species, as L. cryptanthus, L. hispanicus, L. micranthus, L. 

digitatus, L. cosentinii, L. pilosus, and L. palaestinus, and one BAC 83F23 was found in L. luteus. 

Surprisingly, all of the clones in L. atlanticus were mapped with patterns that were typical for L. 

angustifolius. Also, in the case of the Lang20-specific clones, we observed that both 17B07 and 83F23 

were localized in one Lang20-like chromosome of species such as L. albus, L. micranthus, L. atlanticus, 

L. digitatus, L. cosentinii, and L. pilosus, but only BAC 17B07 hybridized with Lhis20 and Lgra20 in L. 

hispanicus and L. graecus, respectively. All of the three Lang20-specific clones (17B07, 83F23, 1M23) 

were represented in L. cryptanthus and L. luteus (Supplementary Figures S2 and S3). In the Lang04-

like chromosome, four lupins had a chromosome that carried both clones, but the other four only had 

one of them, BAC 47P22. Furthermore, within Lang10-like chromosomes, clone 77C13 was mapped 

in one chromosome of six lupin species, while its colocalization with clone 57K22 was detected only 

in two species: L. cryptanthus and L. micranthus (Supplementary Figures S2 and S7). 
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Figure 5. Localization of BAC clones from chromosome Lang06 in chromosomes of related lupins. (A) 

L. luteus—BAC 44J16 (red signals) and BAC 51D03 (green signals). (B) L. pilosus—BAC 80B11 (red) 

and BAC 76K16 (green). (C) L. pilosus—BAC 51D03 (red) and BAC 76K16 (green). (D) L. palaestinus—

BAC 80B11 (red) and BAC 76K16 (green). (E) L. digitatus – BAC 80B11 (red) and BAC 76K16 (green). 

(F) L. hispanicus—BAC 80B11 (red). (G) L. micranthus – BAC 80B11 (red) and BAC 127N17 (green). (H) 

L. micranthus—BAC 51D03 (red) and BAC 127N17 (green). Chromosomes were stained with DAPI 

(blue). Arrows in (H) show the localization of BAC 80B11 (red). Scale bars, 5 µm. 
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4. Discussion 

4.1. Lupin Chromosomes Reveal Their Puzzling Evolution 

Our analysis shows that multiple chromosomal rearrangements were responsible for the 

chromosome variations in OWLs. We propose a model that involves complex changes that shaped 

the variations in chromosome number and/or structure. We assume that the mechanisms driving 

these differences involved DNA gain or loss through insertion/duplication or deletion. In addition, 

chromosome changes can also be derived from rearrangements within or between chromosomes, 

through insertion or translocation [27]. In particular, we hypothesized that at least four types (I–IV) 

of rearrangements have impacted on lupin chromosome changes. Possible changes of Lang06-like 

and Lang17-like chromosomes (Figure 6) might be explained by translocations of both arms of Lang 

chromosomes, to lead to two Lang06-like chromosomes in L. luteus, L. albus, L. graecus and L. 

micranthus, and two Lang17-like chromosomes in L. pilosus. However, these chromosomes might also 

have arisen from chromosome breakage, and have then undergone chromosome fusion-fission. We 

have called these possible rearrangements type I. Chromosomal changes within type II might 

encompass translocation of arm A and arm B to three chromosomes, which would result in two 

chromosomes carrying arm A, and one with arm B. However, translocation of these arms might have 

involved two chromosomes (one with arm A, the other with arm B), with the subsequent duplication 

of chromosome-carrying clones from arm A. Additionally, chromosome breakage might occur as 

well, together with the translocation of arm A or the duplication of the entire chromosome-carrying 

clones from arm A. This type of change was exclusively seen for the Lang06-like chromosome in L. 

pilosus and the Lang17-like chromosomes in L. digitatus, where three chromosomes (Lpil06, Lpil06′, 

Lpil06′′ Ldig17, Ldig17′, Ldig′′; respectively) were identified. Type III rearrangements were seen for 

the Lang06-like chromosome in L. hispanicus, L. digitatus and L. cosentinii, and for the Lang17-like 

chromosome in L. palaestinus. They show changes that underlie either translocation of one of the 

chromosome arms (arm A) or chromosome breakage, with the loss of one of the chromosome arm 

(arm B). The fourth type of rearrangement (type IV) was detected uniquely in the Lang06-like 

chromosomes of L. palaestinus. It might have evolved via multiple changes, such as translocation of 

arm A to two chromosomes, translocation of arm A to one chromosome and then duplication of the 

entire chromosome, or chromosome breakage and loss of one chromosome carrying clones from B 

and then duplication of the entire chromosome with translocation of arm A. In L. cryptanthus (2n = 

40) and L. atlanticus (2n = 38), Lang06-like chromosomes were identified with patterns typical to L. 

angustifolius, beyond ‘repetitive’ clone 51D03 in L. atlanticus. Changes within the Lang17-like 

chromosome were noted only in three species: L. digitatus, L. pilosus and L. palaestinus. In other lupins, 

the BAC-FISH patterns were visualised as for L. angustifolius, with the exception of the ‘repetitive’ 

BAC 111G03 in L. cryptanthus. 



Genes 2019, 9, 259  19 of 26 

 

 

Figure 6. Scheme of the structural rearrangements within Lang06 and Lang17 of L. angustifolius and 

the related lupins. The pink and green rectangles correspond to arm A and arm B of both of the Lang06 

and Lang17 chromosomes in related lupins. 

Chromosome translocation changes between lupins can be explained in a similar way to those 

identified between Phaseolus vulgaris and Vigna unguiculata, where two BACs from two chromosomes 

of P. vulgaris were mapped to one chromosome of V. unguiculata [28]. However, the possibility of 

chromosome breakage and then chromosome fusion-fission in lupins, which could well occur in 

centromere regions and lead to chromosome reduction, needs to be further demonstrated using 

additional centromeric markers. Despite the tendency of chromosome reduction as a general 

evolutionary event, the mechanisms of these events are unclear in lupins [17]. Dysploidy via 

chromosome fusion-fission has been widely recognized in grasses, such as the Brachypodium genus 

[29,30], as well as in Brassicaceae [31], but in legumes it has only been seen in Phaseolus leptostachyus, 

with its chromosome number 2n = 20 [32]. On the other hand, ascending or descending aneuploidy 

via duplication or losses of individual chromosomes might also have a pivotal role in plants [1]. It 

has been shown that descending aneuploidy occurred mostly in early diverging papilionoid lineages 

(to which lupins belong), especially in species with low basic chromosome numbers [33]. Aneuploidy 

is exemplified in the Arachis genus (2n = 2x = 18) [34], Lathyrus [35], and Medicago sections [36]. Both 

dysploidy and aneuploidy in lupins cannot be ruled out, considering that polyploidy is associated 

with chromosome number reduction in core papilionoids [33,37]. However, aneuploidy complex 

series [38] and duplication and triplication [39] have been already suggested as crucial players in 

lupin genome variations. Importantly, Drummond [38] noted that an additional evolutionary 

mechanism like allopolyploidy might be unique to OWLs. They also assumed that the diversification 

within NWLs with stable chromosome numbers of 2n = 36 or 2n = 48 resulted from ecological 

speciation chromosome changes related to ploidy, with the exception of eastern North American 

lupins, with chromosome 2n = 52. 

Thus, we address the question whether the course of lupin karyotypes followed from karyotype 

2n = 52 to 2n = 36. In theory, species with 2n = 52 can evolve from ‘ancestral’ species with 2n = 54. 

There is no data about lupin with 2n = 54 chromosomes; however, they might be extinct. Furthermore, 

there have not been species with 2n = 44, 46 and 48 described within OWLs, while in NWLs, species 

with 2n = 48 are widely seen [40,41]. It can be suggested that species with 2n = 54 were the ‘ancestral’ 
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ones, whereby the species with lower chromosome numbers might have undergone three rounds of 

whole genome duplication (WGD), to result in 2n = 48, 2n = 42 and 2n = 36, with the assistance of 

aneuploidy giving chromosome numbers 2n = 52, 50, 40, 38, 32. In this sense, lupin karyotypes might 

also have arisen due to aneuploidy, as their chromosome number is often different from the simple 

multiple of the basic chromosome number, like in L. cosentinii (2n = 32), L. atlanticus (2n = 38), L. 

angustifolius (2n = 40), L. albus (2n = 50), and L. luteus (2n = 52). We now present here our hypothetic 

model of lupin chromosome evolution, which is based on the polyploidy events supplemented by 

the likely aneuploidy events (Figure 7). We assume that the basic chromosome number in OWLs is x 

= 6. The idea of the basic chromosome number x = 6 is consistent the same base number considered 

for NWLs [41] and the ancestral rosid karyotype model [42], but contrary to comparative 

phylogenetic analyses, where the ancestral basic chromosome number for lupins as a member of 

genistoids was postulated to be x = 9 [43]. 

 

Figure 7. Hypothetical pattern of direction of lupin chromosome evolution through polyploidy and 

aneuploidy events. † describes extinct species; considering x = 6 the 1 × 6 corresponds to one round of 

whole genome duplication (WGD), while 3 × 6 three rounds of WGD; number 2 (4) indicates the 

aneuploidy events.  

Of importance, multiple and various rearrangements in chromosome structures support our 

hypothesis regarding variations in the lupin chromosomes. Lupin chromosome variation can be 

explained by different genome organization and evolutionary relationships between the reference  

L. angustifolius and the related lupins. Of note, the identification of chromosome changes was not 

directly linked to the number of clones used for comparative mapping. Four clones were enough to 

detect structural changes for Lang03 and Lang11 in all of the lupins. However, the localization of four 

clones in the Lang08-like chromosomes illustrated structural changes in the species analyzed, and 

chromosome number rearrangements only in L. micranthus. Furthermore, it can also be considered 

that an individual chromosome might have undergone its specific and independent evolutionary 

changes.  

We realize that a cytogenetically based perspective can underestimate the evolutionary events 

that have shaped plant genomes. Lupins belong to the genistoid clade, which is known as one of the 

most complex groups in the facet of polyploidy, and one of the weakest supported groups in core 

papilionoids [33]. The advent of lupin genome sequencing data and the availability of extensive 

genomic resources should be accomplished in the future. Additionally, the power of informative 

cytogenetic mapping to track genome duplication or extensive synteny among species can be 

increased while suitable model species are adopted, like model soybean and common bean [44], or 

Arabidopsis thaliana and other species within Brassicaceae [45,46].  

Thus, for further comparative chromosome analyses, we designated L. digitatus, L. pilosus, and 

L. palaestinus as the reference species to track chromosome evolution within lupins. These are species 

showing chromosome changes of both Lang06- and Lang17-like chromosomes (Figure 6). 
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Interestingly, these species have chromosome numbers that directly correspond to the basic 

chromosome number x = 6. Phylogeny analyses indicated that L. digitatus and L. palaestinus are the 

youngest ones, with diversification times estimated at about 0.5 mya. The diversification time of L. 

pilosus was estimated as about 3 mya [47]. Although L. pilosus and L. palaestinus share the same 

chromosome number, they differ in the divergence times and different types of chromosome changes 

among the Lang06-like and Lang17-like chromosomes. This sheds light on different evolutionary 

patterns of these two species with 2n = 42, and also L. digitatus with 2n = 36. It can be hypothesized 

that L. digitatus and L. palaestinus have undergone at least one common round of WGD, while L. pilosus 

might have been driven by different WGD. 

On the other hand, there is a lupin group with chromosome number 2n = 52 or 2n = 50. In contrast 

to L. digitatus, L. micranthus (2n = 52), and L. albus (2n = 50) are two of the oldest species within the 

OWLs, with divergence about 7 mya and 7.5 mya, respectively [47]. It is intriguing the way species 

carrying chromosome 2n = 50-52 might have evolved. We wonder whether species with chromosome 

number 2n = 52, like L. micranthus, L. luteus, and L. hispanicus, might have evolved through different 

evolutionary events, as L. luteus and L. hispanicus diverged about 2.0 mya [47,48]. Consider also that 

L. micranthus and L. luteus have the smallest (0.98 pg/2C DNA) and largest (2.44 pg/2C DNA) 

genomes, respectively, in OWLs. On the other hand, L. hispanicus showed Lang06-like chromosome 

changes that were the same as L. digitatus. To highlight the complexity of this lupin genome variation, 

we note that L. digitatus and L. hispanicus share the highest number of clones that were mapped as 

‘repetitive’. They have different chromosome numbers and diversification rates, and they are 

geographically separated. L. digitatus is distributed mainly in the northern part of Africa (Sahara and 

Egypt), and L. hispanicus is in north-western Spain, Portugal, Greece, and Turkey [14].  

4.2. Cytogenetic Resources for Lupin Genome Analyses 

Here we have demonstrated that the integration of whole genome sequencing and chromosome 

mapping through BAC-FISH can be successfully used to determine the genome assembly of the 

genome of L. angustifolius. This integrative approach has allowed us to construct a comprehensive 

chromosomal map that might be erroneously interpreted, if only the sequence assembly was to be 

applied, as it was applied to precisely assign the chromosomes and pseudomolecules of Brachypodium 

distachyon [49] and cotton [50]. As a consequence, we can finally integrate the unassigned linkage 

groups, as was shown for cluster-2, which has QTLs for flowering time [51] and flowering time gene 

homologue markers [39]. This ideogram developed for L. angustifolius defines the complete genomic 

map through the high number of chromosome markers that were assigned using whole BAC 

sequences. 

For example, in our previous study [17], Lang08 carrying clones BACs 84D22, 111B88, 142C04, 

and 142D13 were mapped to scaffold AOCW01048841of the L. angutifolius genome published by 

Yang, et al. [52], while in the present study it was localized in the pseudomolecule NLL17 of the L. 

angutifolius genome [20]. Even so, implementation of FISH with these BACs as probes, excludes them 

as markers of Lang17 [23]. In this case, we established them as markers for Lang08 by the supportive 

ideogram provided by Wyrwa et al. [24]. Conversely, some BACs were localized in pseudomolecules, 

while they were not mapped in linkage groups. Similarly, we were able to saturate the 

pseudomolecules NLL13 by clones 8C03, which remained unmapped in the genetic map [23]. In this 

way, the chromosome order was also reshuffled, as was done for Lang19 and Lang07. 

As the number of sequenced genomes is rising rapidly, there is the need to produce the 

appropriate tools to establish high quality reference genomes among plants studied that can be used 

for analyses of genomic variation. Furthermore, and especially in the case of some complex genomes, 

BAC sequencing can still contribute to improved genome sequencing carried out by NGS methods 

[53], and can remain as an additional ‘check point’, even if advanced techniques like BioNano optical 

mapping and Hi-C sequencing are implemented for the comparative assembly of genomes [54].  

In Lupinus species, only the whole genome sequence of L. angustifolius is available so far. Thus, 

the sequence-comparison-based evolutionary research in this group of plants is impossible, to date. 

In addition, the other genetic resources, such as genetic maps and reliable chromosome-specific 
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markers, are also rather limited. Hence, the unambiguous BAC markers developed can help guide 

comparative research in lupins and can also be useful to distinguish crop and wild genotypes (e.g., 

L. albus from L. graecus). In addition, we have provided markers for individual chromosomes of L. 

cosentinii (2n = 32). Further reciprocal BAC-FISH within this species should provide the completed 

ideogram of its karyotype. Additionally, in L. albus (2n = 50), these markers can be used as anchors to 

integrate the pseudomolecules and chromosomes of the already sequenced white lupin genome 

(Peret laboratory; personal communication).  

A few BAC clones per chromosome, similar to the number we used for particular lupin 

chromosomes, were successful used to compare karyotypes of Phaseolus [10] and to discover 

dysploidy in this genus, as mentioned above [32]. Considering the high chromosome numbers in 

lupins, there is the suggestion to track particular chromosome of complement in more detailed 

pathways, either by providing higher numbers of BAC probes for FISH, as were generated for 

chromosome 6 in tomato [12] and chromosome 9 in maize [55]. The most advanced comparative 

studies require the use of high numbers of clones assigned to particular chromosomes, to track 

conserved chromosomal syntenies [56], reveal hypothesized ancestral chromosome numbers, and 

reconstruct the course of chromosome rearrangements during evolution [57,58]. An alternative 

approach is to implement the promising oligo-painting method [59] to investigate changes at 

different chromosome or chromosome-arm scales.  

5. Conclusions 

We have shown that some Lang-like chromosomes retain the same BAC-FISH patterns, while 

others expand with multiple rearrangements. We cannot determine the direction of chromosomal 

changes that shaped these lupin genomes, as we have assumed that any individual chromosome 

might undergone independent evolution. However, a tendency of the chromosome number to be 

reduced through translocation and/or breakage in the lupin genus was seen (mainly in the Lang06-

like and Lang17-like chromosomes, and a few other chromosomes). We propose L. digitatus (2n = 36), 

L. pilosus (2n = 42) and L. palaestinus (2n = 42) as reference species for comparative evolutionary 

analyses here. Given possibly three independent WGD in lupins, together with the predominant 

chromosomal data of chromosome numbers and phylogenetic analyses, we hypothesize that the 

lupin basic chromosomes with x = 6 arose from a reduction from 2n = 54, with assistance of 

aneuploidy. Lupinus are considered as polyploids, like for many agricultural crops. However, the 

evolutionary relationships between lupins in terms of their complex polyploidy origin are neither 

evident nor simple. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: 
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(1998), with minor editorial modifications, Figure S2-S12: Ideograms of individual chromosomes in lupins. (S2) 

L. cryptanthus. (S3) L. luteus. (S4) L. hispanicus (S5) L. albus. (S6) L. graecus. (S7) L. micranthus. (S8) L. atlanticus. (S9) 

L. digitatus. (S10) L. cosentinii. (S11) L. pilosus. (S12) L. palaestinus. BAC markers are indicated by rectangles with 
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chromosomes and BAC positions in L. angustifolius genome (Hane et al. 2017), Figure S14: Diagrams with 

examples of the changes in chromosome structure, deduced according to the presence/absence of ‘single’ BACs 

in particular Lang-like chromosomes. 
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