1,871 research outputs found

    Spitzer observations of Bow Shocks and Outflows in RCW 38

    Full text link
    We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at IRAC wavelengths, the fifth is visible only at 24 microns. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS~2, have caused an outflow to the NE and SW of the central subcluster. The southern lobe of hot ionised gas is detected in X-rays; shocked gas and heated dust from the shock-front are detected with Spitzer at 4.5 and 24 microns. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 & 5.8 micron observations of the cluster DBS2003-124, NE of RCW 38, where 33 candidate YSOs are identified. One star associated with the cluster drives a parsec-scale jet. Two candidate HH objects associated with the jet are visible at IRAC and MIPS wavelengths. The jet extends over a distance of ~3 pc. Assuming a velocity of 100 km/s for the jet material gives an age of about 30,000 years, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.Comment: 27 pages, 6 figures, accepted to Ap

    The Structure of the Star-forming Cluster RCW 38

    Full text link
    We present a study of the structure of the high mass star-forming region RCW~38 and the spatial distribution of its young stellar population. Spitzer IRAC photometry 3-8um are combined with 2MASS near-IR data to identify young stellar objects by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 Class II stars, and 74 Class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including seven class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] vs. [3.6]-[5.8] cmd. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main sequence stars. A previously detected IR cluster, DB2001_Obj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas to dust ratio is examined using the X-ray derived hydrogen column density, N_H and the K-band extinction, and found to be consistent with the diffuse ISM, in contrast with Serpens & NGC1333. We posit that the high photoionising flux of massive stars in RCW 38 affects the agglomeration of the dust grains.Comment: 98 pages, 15 figure

    Community Partnerships: An Innovative Model of Social Work Education and Practice

    Get PDF
    Community challenges force human service agencies to collaborate in providing services. Such collaborations require practitioners to have skills not found in mainstream social work curricula. This paper explores how a new MSW program evolved through dialog with community leaders and resulted in a curriculum with a sole concentration of community partnerships

    Satisfiability of ECTL* with tree constraints

    Full text link
    Recently, we have shown that satisfiability for ECTL∗\mathsf{ECTL}^* with constraints over Z\mathbb{Z} is decidable using a new technique. This approach reduces the satisfiability problem of ECTL∗\mathsf{ECTL}^* with constraints over some structure A (or class of structures) to the problem whether A has a certain model theoretic property that we called EHD (for "existence of homomorphisms is decidable"). Here we apply this approach to concrete domains that are tree-like and obtain several results. We show that satisfiability of ECTL∗\mathsf{ECTL}^* with constraints is decidable over (i) semi-linear orders (i.e., tree-like structures where branches form arbitrary linear orders), (ii) ordinal trees (semi-linear orders where the branches form ordinals), and (iii) infinitely branching trees of height h for each fixed h∈Nh\in \mathbb{N}. We prove that all these classes of structures have the property EHD. In contrast, we introduce Ehrenfeucht-Fraisse-games for WMSO+B\mathsf{WMSO}+\mathsf{B} (weak MSO\mathsf{MSO} with the bounding quantifier) and use them to show that the infinite (order) tree does not have property EHD. As a consequence, a different approach has to be taken in order to settle the question whether satisfiability of ECTL∗\mathsf{ECTL}^* (or even LTL\mathsf{LTL}) with constraints over the infinite (order) tree is decidable

    YSOVAR: Mid-IR variability in the star forming region Lynds 1688

    Get PDF
    The emission from young stellar objects (YSOs) in the mid-IR is dominated by the inner rim of their circumstellar disks. We present an IR-monitoring survey of about 800 objects in the direction of the Lynds 1688 (L1688) star forming region over four visibility windows spanning 1.6 years using the \emph{Spitzer} space telescope in its warm mission phase. Among all lightcurves, 57 sources are cluster members identified based on their spectral-energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the lightcurves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6 years. Non-periodic lightcurves often still show a preferred timescale of variability which is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption towards the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.Comment: accepted by ApJ, 24 pages, 17 figure

    X-Atlas: An Online Archive of Chandra's Stellar High Energy Transmission Gratings Observations

    Full text link
    The high-resolution X-ray spectroscopy made possible by the 1999 deployment of the Chandra X-ray Observatory has revolutionized our understanding of stellar X-ray emission. Many puzzles remain, though, particularly regarding the mechanisms of X-ray emission from OB stars. Although numerous individual stars have been observed in high-resolution, realizing the full scientific potential of these observations will necessitate studying the high-resolution Chandra dataset as a whole. To facilitate the rapid comparison and characterization of stellar spectra, we have compiled a uniformly processed database of all stars observed with the Chandra High Energy Transmission Grating (HETG). This database, known as X-Atlas, is accessible through a web interface with searching, data retrieval, and interactive plotting capabilities. For each target, X-Atlas also features predictions of the low-resolution ACIS spectra convolved from the HETG data for comparison with stellar sources in archival ACIS images. Preliminary analyses of the hardness ratios, quantiles, and spectral fits derived from the predicted ACIS spectra reveal systematic differences between the high-mass and low-mass stars in the atlas and offer evidence for at least two distinct classes of high-mass stars. A high degree of X-ray variability is also seen in both high and low-mass stars, including Capella, long thought to exhibit minimal variability. X-Atlas contains over 130 observations of approximately 25 high-mass stars and 40 low-mass stars and will be updated as additional stellar HETG observations become public. The atlas has recently expanded to non-stellar point sources, and Low Energy Transmission Grating (LETG) observations are currently being added as well

    IRAS 20050+2720: Anatomy of a young stellar cluster

    Get PDF
    IRAS 20050+2720 is young star forming region at a distance of 700 pc without apparent high mass stars. We present results of our multiwavelength study of IRAS 20050+2720 which includes observations by Chandra and Spitzer, and 2MASS and UBVRI photometry. In total, about 300 YSOs in different evolutionary stages are found. We characterize the distribution of young stellar objects (YSOs) in this region using a minimum spanning tree (MST) analysis. We newly identify a second cluster core, which consists mostly of class II objects, about 10 arcmin from the center of the cloud. YSOs of earlier evolutionary stages are more clustered than more evolved objects. The X-ray luminosity function (XLF) of IRAS 20050+2720 is roughly lognormal, but steeper than the XLF of the more massive Orion nebula complex. IRAS 20050+2720 shows a lower N_H/A_K ratio compared with the diffuse ISM.Comment: 15 pages, 12 figures, accepted by A
    • …
    corecore