15,456 research outputs found
Energy Distribution in disordered elastic Networks
Disordered networks are found in many natural and artificial materials, from gels or cytoskeletal structures to metallic foams or bones. Here, the energy distribution in this type of networks is modeled, taking into account the orientation of the struts. A correlation between the orientation and the energy per unit volume is found and described as a function of the connectivity in the network and the relative bending stiffness of the struts. If one or both parameters have relatively large values, the struts aligned in the loading direction present the highest values of energy. On the contrary, if these have relatively small values, the highest values of energy can be reached in the struts oriented transversally. This result allows explaining in a simple way remodeling processes in biological materials, for example, the remodeling of trabecular bone and the reorganization in the cytoskeleton. Additionally, the correlation between the orientation, the affinity, and the bending-stretching ratio in the network is discussed
Single and Double Photoionization and Photodissociation of Toluene by Soft X-rays in Circumstellar Environment
The formation of polycyclic aromatic hydrocarbons (PAHs) and their methyl
derivatives occurs mainly in the dust shells of asymptotic giant branch (AGB)
stars. The bands at 3.3 and 3.4 m, observed in infrared emission spectra
of several objects, are attributed C-H vibrational modes in aromatic and
aliphatic structures, respectively. In general, the feature at 3.3 m is
more intense than the 3.4 m. Photoionization and photodissociation
processes of toluene, the precursor of methylated PAHs, were studied using
synchrotron radiation at soft X-ray energies around the carbon K edge with
time-of-flight mass spectrometry. Partial ion yields of a large number of ionic
fragments were extracted from single and 2D-spectra, where electron-ion
coincidences have revealed the doubly charged parent-molecule and several
doubly charged fragments containing seven carbon atoms with considerable
abundance. \textit{Ab initio} calculations based on density functional theory
were performed to elucidate the chemical structure of these stable dicationic
species. The survival of the dications subjected to hard inner shell ionization
suggests that they could be observed in the interstellar medium, especially in
regions where PAHs are detected. The ionization and destruction of toluene
induced by X-rays were examined in the T Dra conditions, a carbon-rich AGB
star. In this context, a minimum photodissociation radius and the half-life of
toluene subjected to the incidence of the soft X-ray flux emitted from a
companion white dwarf star were determined.Comment: 11 pages, 4 figures, accept for publication in Ap
Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores
Many atmospheric organic compounds are long-lived enough to be transported from their sources to polar regions and high mountain environments where they can be trapped in ice archives. While inorganic components in ice archives have been studied extensively to identify past climate changes, organic compounds have rarely been used to assess paleo-environmental changes, mainly due to the lack of suitable analytical methods. This study presents a new method of direct injection HPLC-MS analysis, without the need of pre-concentrating the melted ice, for the determination of a series of novel biomarkers in ice-core samples indicative of primary and secondary terrestrial and marine organic aerosol sources. Eliminating a preconcentration step reduces contamination potential and decreases the required sample volume thus allowing a higher time resolution in the archives. The method is characterised by limits of detections (LODs) in the range of 0.01-15 ppb, depending on the analyte, and accuracy evaluated through an interlaboratory comparison. We find that many components in secondary organic aerosols (SOA) are clearly detectable at concentrations comparable to those previously observed in replicate preconcentrated ice samples from the Belukha glacier, Russian Altai Mountains. Some compounds with low recoveries in preconcentration steps are now detectable in samples with this new direct injection method significantly increasing the range of environmental processes and sources that become accessible for paleo-climate studies
Comments on Sweeny and Gliozzi dynamics for simulations of Potts models in the Fortuin-Kasteleyn representation
We compare the correlation times of the Sweeny and Gliozzi dynamics for
two-dimensional Ising and three-state Potts models, and the three-dimensional
Ising model for the simulations in the percolation prepresentation. The results
are also compared with Swendsen-Wang and Wolff cluster dynamics. It is found
that Sweeny and Gliozzi dynamics have essentially the same dynamical critical
behavior. Contrary to Gliozzi's claim (cond-mat/0201285), the Gliozzi dynamics
has critical slowing down comparable to that of other cluster methods. For the
two-dimensional Ising model, both Sweeny and Gliozzi dynamics give good fits to
logarithmic size dependences; for two-dimensional three-state Potts model,
their dynamical critical exponent z is 0.49(1); the three-dimensional Ising
model has z = 0.37(2).Comment: RevTeX, 4 pages, 5 figure
The Finite Field Kakeya Problem
A Besicovitch set in AG(n,q) is a set of points containing a line in every
direction. The Kakeya problem is to determine the minimal size of such a set.
We solve the Kakeya problem in the plane, and substantially improve the known
bounds for n greater than 4.Comment: 13 page
Stochastic delocalization of finite populations
Heterogeneities in environmental conditions often induce corresponding
heterogeneities in the distribution of species. In the extreme case of a
localized patch of increased growth rates, reproducing populations can become
strongly concentrated at the patch despite the entropic tendency for population
to distribute evenly. Several deterministic mathematical models have been used
to characterize the conditions under which localized states can form, and how
they break down due to convective driving forces. Here, we study the
delocalization of a finite population in the presence of number fluctuations.
We find that any finite population delocalizes on sufficiently long time
scales. Depending on parameters, however, populations may remain localized for
a very long time. The typical waiting time to delocalization increases
exponentially with both population size and distance to the critical wind speed
of the deterministic approximation. We augment these simulation results by a
mathematical analysis that treats the reproduction and migration of individuals
as branching random walks subject to global constraints. For a particular
constraint, different from a fixed population size constraint, this model
yields a solvable first moment equation. We find that this solvable model
approximates very well the fixed population size model for large populations,
but starts to deviate as population sizes are small. The analytical approach
allows us to map out a phase diagram of the order parameter as a function of
the two driving parameters, inverse population size and wind speed. Our results
may be used to extend the analysis of delocalization transitions to different
settings, such as the viral quasi-species scenario
- …