246 research outputs found

    IOF2020: Fostering business and software ecosystems for large-scale uptake of IoT in food and farming

    Get PDF
    The Internet of Things (IoT) is expected to be a real game changer that will drastically improve productivity and sustainability in food and farming. However, current IoT applications in this domain are still fragmentary and mainly used by a small group of early adopters. The Internet of Food and Farm 2020 Large-Scale Pilot (IoF2020) addresses the organizational and technological challenges to overcome this situation by fostering a large-scale uptake of IoT in the European food and farming domain. The heart of the project is formed by a balanced set of multi-actor trials that reflect the diversity of the food and farming domain. Each trial is composed of well-delineated use cases developing IoT solutions for the most relevant challenges of the concerned subsector. The project conducts 5 trials with a total of 19 use cases in arable, dairy, fruits, vegetables and meat production. IoF2020 embraces a lean multi-actor approach that combines the development of Minimal Viable Products (MVPs) in short iterations with the active involvement of various stakeholders. The architectural approach supports interoperability of multiple use case systems and reuse of IoT components across them. Use cases are also supported in developing business and solving governance issues. The IoF2020 ecosystem and collaboration space is established to boost the uptake of IoT in Food and Farming and pave the way for new innovations

    Small poly-L-lysines improve cationic lipid-mediated gene transfer in vascular cells in vitro and in vivo

    Get PDF
    The potential of two small poly-L-lysines ( sPLLs), low molecular weight sPLL ( LMW-L) containing 7 - 30 lysine residues and L18 with 18 lysine repeats, to enhance the efficiency of liposome-mediated gene transfer ( GT) with cationic lipid DOCSPER {[}1,3- dioleoyloxy- 2-( N-5-carbamoyl-spermine)-propane] in vascular smooth muscle cells ( SMCs) was investigated. Dynamic light scattering was used for determination of particle size. Confocal microscopy was applied for colocalization studies of sPLLs and plasmid DNA inside cells. GT was performed in proliferating and quiescent primary porcine SMCs in vitro and in vivo in porcine femoral arteries. At low ionic strength, sPLLs formed small complexes with DNA ( 50 100 nm). At high ionic strength, large complexes ( 11 mu m) were observed without any significant differences in particle size between lipoplexes ( DOCSPER/ DNA) and lipopolyplexes ( DOCSPER/ sPLL/ DNA). Both sPLLs were colocalized with DNA inside cells 24 h after transfection, protecting DNA against degradation. DOCSPER/ sPLL/ DNA formulations enhanced GT in vitro up to 5- fold, in a porcine model using local periadventitial application up to 1.5- fold. Both sPLLs significantly increased liposome- mediated GT. Poly-L-lysine L18 was superior to LMW-L since it enabled maximal GT at a 10-fold lower concentration. Thus, sPLLs may serve as enhancers for GT applications in SMCs in vitro and in vivo using local delivery. Copyright (c) 2007 S. Karger AG, Basel

    Paving the Way for a Real-Time Context-Aware Predictive Architecture

    Get PDF
    Internet of Things society generates and needs to consume huge amounts of data in a demanding context-aware scenario. Such exponentially growing data sources require the use of novel processing methodologies, technologies and tools to facilitate data processing in order to detect and prevent situations of interest for the users in their particular context. To solve this issue, we propose an architecture which making use of emerging technologies and cloud platforms can process huge amounts of heterogeneous data and promptly alert users of relevant situations for a particular domain according to their context. Last, but not least, we will provide a graphical tool for domain experts to easily model, automatically generate code and deploy the situations to be detected and the actions to be taken in consequence. The proposal will be evaluated through a real case study related to air quality monitoring and lung diseases in collaboration with a doctor specialist on lung diseases of a public hospital

    Intraoperative radiotherapy during awake craniotomies: preliminary results of a single-center case series

    Get PDF
    Awake craniotomies are performed to avoid postoperative neurological deficits when resecting lesions in the eloquent cortex, especially the speech area. Intraoperative radiotherapy (IORT) has recently focused on optimizing the oncological treatment of primary malignant brain tumors and metastases. Herein, for the first time, we present preliminary results of IORT in the setting of awake craniotomies. From 2021 to 2022, all patients undergoing awake craniotomies for tumor resection combined with IORT were analyzed retrospectively. Demographical and clinical data, operative procedure, and treatment-related complications were evaluated. Five patients were identified (age (mean ± standard deviation (SD): 65 ± 13.5 years (y)). A solid left frontal metastasis was detected in the first patient (female, 49 y). The second patient (male, 72 y) presented with a solid metastasis on the left parietal lobe. The third patient (male, 52 y) was diagnosed with a left temporoparietal metastasis. Patient four (male, 74 y) was diagnosed with a high-grade glioma on the left frontal lobe. A metastasis on the left temporooccipital lobe was detected in the fifth patient (male, 78 y). After awake craniotomy and macroscopic complete tumor resection, intraoperative tumor bed irradiation was carried out with 50 kV x-rays and a total of 20 Gy for 16.7 ± 2.5 min. During a mean follow-up of 6.3 ± 2.6 months, none of the patients developed any surgery- or IORT-related complications or disabling permanent neurological deficits. Intraoperative radiotherapy in combination with awake craniotomy seems to be feasible and safe

    WP 2: "Data collection and processing systems (DCPS) for the conventional markets" and WP 3: "Data collection and processing systems for organic markets"

    Get PDF
    The aim of the EU concerted action EISfOM (QLK5-2002-02400) (European Information System for Organic Markets) is to build up a framework for reporting valid and reliable data for relevant production and market sectors of the European organic sector in order to meet the needs of policy-makers, farmers, processors, wholesalers and other actors involved in organic markets. In order to reach this aim, this action was split into several workpackages. This report describes the approach and results of workpackages 2 and 3. In this first chapter the objective and general approach of these work packages will be described. Chapters 2 and 3 provide an overview of international statistics and data collection systems within the food supply chain at the public and the private level. Chapter 4 describes national statistics and data collection systems within the food supply chain. In Chapter 5, an analysis and appraisal is made of the results with regard to organic data collection and processing systems (DCPSs) and their integration into existing common DCPSs. Chapter 6 draws several general conclusions. Two substantial annexes complete the report, one with the country reports on the situation of data collection and processing in all investigated countries and the other with the first and the second stage questionnaires covering the different data collection levels

    Heparan sulfate proteoglycans as attachment factor for SARS-CoV-2

    Get PDF
    Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is causing an unprecedented global pandemic demanding the urgent development of therapeutic strategies. Microarray binding experiments using an extensive heparan sulfate (HS) oligosaccharide library showed the spike of SARS-CoV-2 can bind HS in a length- and sequence-dependent manner. Hexa- and octasaccharides composed of IdoA2S-GlcNS6S repeating units were identified as optimal ligands. Surface plasma resonance (SPR) showed the SARS-CoV-2 spike protein binds with higher affinity to heparin (K D 55 nM) compared to the receptor binding domain (RBD, K D 1 µM) alone. An octasaccharide composed of IdoA2S-GlcNS6S could inhibit spike-heparin interaction with an IC 50 of 38 nM. Our data supports a model in which the RBD of the spike of SARS-CoV-2 confers sequence specificity for HS expressed by target cells whereas an additional HS binding site in the S1/S2 proteolytic cleavage site enhances the avidity of binding. Collectively, our results highlight the potential of using HS oligosaccharides as a therapeutic agent by inhibiting SARS-CoV-2 binding to target cells

    Enhancing the sustainability performance of Agri-Food Supply Chains by implementing Industry 4.0

    Full text link
    [EN] In order to enhance the sustainability in the supply chain, its members should define and pursue common objectives in the three dimensions of the sustainability (economic, environmental and social). The Agri-Food Supply Chain (AFSC) is a network of different members such as farmers (producers), processors and distributors (wholesales, retailers.), etc.. In order to achieve the performance objectives of the AFSC, Industry 4.0 technologies can be implemented. The aim of this paper is to present a classification of these technologies according to two criteria: objective to be achieved (environmental or social) specified in the main issues to be covered in each objective and member of the AFSC supply chain where it is implemented. In this work, we focus on technologies that deal with environmental and social sustainability because economic sustainability will depend on the specific characteristics of the business (a supply chain using a specific Industry 4.0 technology may be profitable while others do not).This work has been funded by the Project GV/2017/065 "Development of a decision support tool for the management and improvement of sustainability in supply chains" funded by the Regional Government of Valencia. Authors also acknowledge the Project 691249, RUC-APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems.Pérez Perales, D.; Verdecho Sáez, MJ.; Alarcón Valero, F. (2019). Enhancing the sustainability performance of Agri-Food Supply Chains by implementing Industry 4.0. IFIP Advances in Information and Communication Technology. 568:496-503. https://doi.org/10.1007/978-3-030-28464-0_43S496503568Camarinha-Matos, L.M., Fornasiero, R., Afsarmanesh, H.: Collaborative networks as a core enabler of Industry 4.0. In: Camarinha-Matos, L.M., Afsarmanesh, H., Fornasiero, R. (eds.) PRO-VE 2017. IAICT, vol. 506, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65151-4_1Stich, V., Gudergan, G., Zeller, V.: Need and solution to transform the manufacturing industry in the age of Industry 4.0 – a capability maturity index approach. In: Camarinha-Matos, L.M., Afsarmanesh, H., Rezgui, Y. (eds.) PRO-VE 2018. IAICT, vol. 534, pp. 33–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99127-6_3Flores, M., Maklin, D., Golob, M., Al-Ashaab, A., Tucci, C.: Awareness towards Industry 4.0: key enablers and applications for internet of things and big data. In: Camarinha-Matos, L.M., Afsarmanesh, H., Rezgui, Y. (eds.) PRO-VE 2018. IAICT, vol. 534, pp. 377–386. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99127-6_32Seuring, S., Müller, M.: From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16, 1699–1710 (2008)Prima, W.A., Xing, K., Amer, Y.: Collaboration and sustainable agri-food supply chain: a literature review. In: MATEC (2016). https://doi.org/10.1051/matecconf/20165802004Pérez Perales, D., Alarcón Valero, F., Drummond, C., Ortiz, Á.: Towards a sustainable agri-food supply chain model. The case of LEAF. In: Ortiz, Á., Andrés Romano, C., Poler, R., García-Sabater, J.-P. (eds.) Engineering Digital Transformation. LNMIE, pp. 333–341. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96005-0_40Savastano, M., Amendola, C., Bellini, F., D’Ascenzo, F.: Contextual impacts on industrial processes brought by the digital transformation of manufacturing: a systematic review. Sustainability 11, 891 (2019)Varela, L., Araújo, A., Ávila, P., Castro, H., Putnik, G.: Evaluation of the relation between lean manufacturing, Industry 4.0, and sustainability. Sustainability 11, 1439 (2019)Bonilla, S.H., Silva, H.R.O., da Silva, M.T., Gonçalves, R.F., Sacomano, J.B.: Industry 4.0 and sustainability implications: a scenario-based analysis of the impacts and challenges. Sustainability 10, 3740 (2018)Bányai, T., Tamás, P., Illés, B., Stankeviciute, Z., Bányai, A.: Optimization of municipal waste collection routing: impact of Industry 4.0 technologies on environmental awareness and sustainability. Int. J. Environ. Res. Public Health. 16, 634 (2019)Lin, K.C., Shyu, J.Z., Ding, K.: A cross-strait comparison of innovation policy under Industry 4.0 and sustainability development transition. Sustainability 9, 786 (2017)Kamble, S.: Sustainable Industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives. In: Process Safety and Environmental Protection Transactions of the Institution of Chemical Engineers, Part B, vol. 117, pp. 408–25. Institution of Chemical Engineers (2018)Franciosi, C., Iung, B., Miranda, S., Riemma, S.: Maintenance for sustainability in the Industry 4.0 context: a scoping literature review. IFAC-Pap. Online 51(11), 903–908 (2018)Bocken, N.M.P., Short, S.W., Rana, P., Evans, S.: A literature and practice review to develop sustainable business model archetypes. J. Clean. Prod. 65, 42–56 (2014)Bourlakis, M., Maglaras, G., Aktas, E., Gallear, D., Fotopoulos, C.: Firm size and sustainable performance in food supply chains: insights from Greek SMEs. Int. J. Prod. Econ. 152, 112–130 (2014)Garbie, I.H.: An analytical technique to model and assess sustainable development index in manufacturing enterprises. Int. J. Prod. Res. 52(16), 4876–4915 (2014)Beier, G., Niehoff, S., Ziems, T., Xue, B.: Sustainability aspects of a digitalized industry - a comparative study from China and Germany. Int. J. Precis. Eng. Manuf. Green Technol. 4, 227–234 (2017)Pérez, D., Verdecho, M.J., Alarcón, F: Industry 4.0 for the development of more sustainable decision support tools for agri-food supply chain management. In: 13rd International Conference on Industrial Engineering and Industrial Management, XXIII, Gijón, Spain (2019)Xiaolin, L., Linnan, Y., Lin, P., Wengfeng, L., Limin, Z.: Procedia engineering county soil fertility information management system based on embedded GIS. Procedia Eng. 29, 2388–2392 (2012)Satyanarayana, G.V.: Wireless sensor based remote monitoring system for agriculture using ZigBee and GPS. In: 2013 (CAC2S), pp. 110–114 (2013)Phillips, A.J., Newlands, N.K., Liang, S.H.L., Ellert, B.H.: Integrated sensing of soil moisture at the field-scale: measuring, modeling and sharing for improved agricultural decision support. Comput. Electron. Agric. 107, 73–88 (2014)Liopa-tsakalidi, A., Tsolis, D., Barouchas, P.: Application of mobile technologies through an integrated management system for agricultural production. Procedia Technol. 8, 165–170 (2013). (Haicta)Yerpude, S., Singhal, T.K.: Impact of Internet of Things (IoT) data on demand forecasting. Indian J. Sci. Technol. 10, 5 (2017)Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.: Big data in smart farming – a review. Agric. Syst. 153, 69–80 (2017)Castka, P., Balzarova, M.A.: ISO 26000 and supply chains-on the diffusion of the social responsibility standard. Int. J. Prod. Econ. 111(2), 274–286 (2008)Stock, T., Obenaus, M., Kunz, S., Kohl, H.: Industry 4.0 as enabler for a sustainable development: A qualitative assessment of its ecological and social potential. Process. Saf. Environ. 118, 254–267 (2018)Verdecho, M.J., Pérez, D., Alarcón F.: Proposal of a customer-oriented sustainable balanced scorecard for agri-food supply chains. In: 12th International Conference on Industrial Engineering and Industrial Management, Girona, Spain, 12–13 July (2018)Valcour, P.M., Hunter, L.W.: Technology, organizations, and work-life integration. In: Kossek, E.E. Lambert, S.J. (eds.), Work and Life Integration: Organizational, Cultural, and Individual Perspectives, pp. 61–84. Lawrence Erlbaum Associates, Mahwah (2005)Arntz, M., Gregory, T., Zierahn, U.: The risk of automation for jobs in OECD countries: a comparative analysis. In: OECD Social, Employment and Migration Working Papers, no. 189. OECD Publishing, Paris (2016)Grubert, J., Langlotz, T., Zollmann, S., Regenbrecht, H.: Towards pervasive augmented reality: context-awareness in augmented reality. IEEE Trans. Vis. Comput. Graph. 23, 1 (2016)Velthuis, A.G.J.: New Approaches to Food-Safety Economics. Kluwer Academic Publishers, Dordrecht (2003)Sándor, Z.P., Csiszár, C.: Development stages of intelligent parking information systems for trucks. Acta Polytechnica Hungarica 10(4), 161–174 (2013)Scognamiglio, V., Arduini, F., Palleschi, G., Rea, G.: Biosensing technology for sustainable food safety. Trends Analyt. Chem. 62, 1–10 (2014)Brynjolfsson, E., McAfee, A.: The Second Machine Age. Work, Progress, and Prosperity in a Time of Brilliant Technologies. W.W. Norton & Company, London (2014)Smith, A., Caiazza, T.: Automation in everyday life (2017). http://assets.pewresearch.org/wpcontent/uploads/sites/14/2017/10/03151500/PI_2017.10.04_Automation_FINAL.pdfHefferon, K.L.: Nutritionally enhanced food crops; progress and perspectives. Int. J. Mol. Sci. 16, 3895–3914 (2015)Glass, S., Fanzo, J.: Genetic modification technology for nutrition and improving diets: an ethical perspective. Curr. Opin. Biotech. 44, 46–51 (2017)Moe, T.: Perspectives on traceability in food manufacture’. Trends Food Sci. Technol. 9(5), 211–214 (1998)Latino, M., Corallo, A., Menegoli, M.: From Industry 4.0 to Agriculture 4.0: how manage product data in agri-food supply chain for voluntary traceability, a framework proposed. In: 20th International Conference on Food and Environment (ICFE), Rome (2018)Linus, U.O.: Traceability in agriculture and food supply chain: a review of basic concepts, technological implications, and future prospects. J. Food Agric. Environ. 1(1), 101–106 (2003)Maumbe, B.M., Okello, J.: Uses of information and communication technology (ICT) in agriculture and rural development in Sub-Saharan Africa: experiences from South Africa and Kenya. IJICTRDA 1(1), 1–22 (2010)Dlodlo, N., Kalezhi, J.: The internet of things in agriculture for sustainable rural development. In: International Conference on Emerging Trends in Networks and Computer Communications (ETNCC) (2015

    Enhanced Gene Delivery Mediated by Low Molecular Weight Chitosan/DNA Complexes: Effect of pH and Serum

    Get PDF
    This study was designed to systematically evaluate the influence of pH and serum on the transfection process of chitosan-DNA complexes, with the objective of maximizing their efficiency. The hydrodynamic diameter of the complexes, measured by dynamic light scattering (DLS), was found to increase with salt and pH from 243 nm in water to 1244 nm in PBS at pH 7.4 and aggregation in presence of 10% serum. The cellular uptake of complexes into HEK 293 cells assessed by flow cytometry and confocal fluorescent imaging was found to increase at lower pH and serum. Based on these data, new methodology were tested and high levels of transfection (>40%) were achieved when transfection was initiated at pH 6.5 with 10% serum for 8-24 h to maximize uptake and then the media was changed to pH 7.4 with 10% serum for an additional 24-40 h period. Cytotoxicity of chitosan/DNA complexes was also considerably lower than Lipofectamine. Our study demonstrates that the evaluation of the influence of important parameters in the methodology of transfection enables the understanding of crucial physicochemical and biological mechanisms which allows for the design of methodologies maximising transgene expression
    corecore