35 research outputs found

    Review: Pharmaceutical and personal care products (PPCPs) as endocrine disrupting contaminants (EDCs) in South African surface waters

    Get PDF
    Globally, water resources are under constant threat of being polluted by a diverse range of man-made chemicals, and South Africa is no exception. These  contaminants can have detrimental effects on both human and wildlife health. It is increasingly evident that several chemicals may modulate endocrine system pathways in vertebrate species, and these are collectively referred to as endocrine disrupting contaminants (EDCs). Although the endocrine-disrupting effect of water pollutants has been mainly linked to agricultural pesticides and industrial effluents, other pollutants such as pharmaceuticals and personal care products (PPCPs) are largely unnoticed, but also pose a potentially significant threat. Here we present for the first time in a South African context, a summarised list of PPCPs and other EDCs detected to date within South African water systems, as well as their possible endocrine-disrupting effect in-vitro and in-vivo. This review addresses other factors which should be investigated in future studies, including endocrine disruption, PPCP metabolites, environmental toxicology, and antibiotic resistance. The challenges of removing EDCs and other pollutants at South African wastewater treatment works (WWTWs) are also highlighted. The need for focused research involving both in-vitro and in-vivo studies to detect PPCPs in water systems, and to delineate adverse outcome pathways (AOPs) of priority PPCPs to aid in environmental impact  assessment (EIA), are discussed.Keywords: pharmaceutical, endocrine disruption, wastewater, sewage wate

    The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters.

    Get PDF
    A large number of emerging contaminants (ECs) are known to persist in surface waters, and create pressure on wastewater treatment works (WWTW) for their effective removal. Although a large database for the levels of these pollutants in water systems exist globally, there is still a lack in the correlation of the levels of these pollutants with possible long-term adverse health effects in wildlife and humans, such as endocrine disruption. The current study detected a total of 55 ECs in WWTW influent surface water, 41 ECs in effluent, and 40 ECs in environmental waters located upstream and downstream of the plant. A list of ECs persisted through the WWTW process, with 28% of all detected ECs removed by less than 50%, and 18% of all ECs were removed by less than 25%. Negative mass balances of some pharmaceuticals and metabolites were observed within the WWTW, suggesting possible back-transformation of ECs during wastewater treatment. Three parental illicit drug compounds were detected within the influent of the WWTW, with concentrations ranging between 27.6 and 147.0 ng L−1 for cocaine, 35.6–120.6 ng L−1 for mephedrone, and 270.9–450.2 ng L−1 for methamphetamine. The related environmental risks are also discussed for some ECs, with particular reference to their ability to disrupt endocrine systems. The current study propose the potential of the pharmaceuticals carbamazepine, naproxen, diclofenac and ibuprofen to be regarded as priority ECs for environmental monitoring due to their regular detection and persistence in environmental waters and their possible contribution towards adverse health effects in humans and wildlife

    Identification of synergistic interactions among microorganisms in biofilms by digital image analysis

    Get PDF
    Digital image analysis showed that reductions in biofilm plating efficiency were due to the loss of protection provided by two benzoate-degrading strains of Pseudomonas fluorescens. This loss in protection was due to the spatial separation of the protective organisms from benzoate-sensitive organisms during the dilution process. Communities were cultivated in flow cells irrigated with trypticase soy broth. When the effluent from these flow cells was plated on 0.15% benzoic acid, satellite colonies formed only in the vicinity of primary colonies. A digital image analysis procedure was developed to measure the size and spatial distribution of these satellites as a function of distance from the primary colony. The size of satellites served as a measure of growth, and the number per unit area served as a measure of survival. At the three dilutions tested, the size and concentration of satellite colonies varied inversely with distance from the primary colonies. When these measurements were plotted, the slopes were used to quantify the effect of bacterial association on the growth and survivability of the satellites. In the absence of the primary colonies, satellites grew in axenic culture only at low benzoate concentrations. Thus benzoate-degrading organisms are capable of creating a protective microenvironment for other members of biofilm communities

    A flow cell simulating a subsurface rock fracture for investigations of groundwater-derived biofilms

    Get PDF
    Laboratory scale continuous-flow-through chambers (flow cells) facilitate the observation of microbes in a controlled, fully hydrated environment, although these systems often do not simulate the environmental conditions under which microorganisms are found. We developed a flow cell that mimics a subsurface groundwater-saturated rock fracture and isamenable to confocal laser scanning microscopy while allowing for the simple removal of the attached biomass. This flow cell was used to investigate the effect of toluene, a representative contaminant for non-aqueous phase liquids, on groundwater-derived biofilms. Reduced average biofilm biomass and thickness, and diminished diversity of amplifiable 16S rRNA sequences were observed for biofilms that developed in the presence of toluene, compared to the biofilms grown in the absence of toluene. The flow cell also allowed the detection of fluorescent protein-labelled cells

    CO2 Production as an Indicator of Biofilm Metabolism▿ †

    No full text
    Biofilms are important in aquatic nutrient cycling and microbial proliferation. In these structures, nutrients like carbon are channeled into the production of extracellular polymeric substances or cell division; both are vital for microbial survival and propagation. The aim of this study was to assess carbon channeling into cellular or noncellular fractions in biofilms. Growing in tubular reactors, biofilms of our model strain Pseudomonas sp. strain CT07 produced cells to the planktonic phase from the early stages of biofilm development, reaching pseudo steady state with a consistent yield of ∼107 cells·cm−2·h−1 within 72 h. Total direct counts and image analysis showed that most of the converted carbon occurred in the noncellular fraction, with the released and sessile cells accounting for <10% and <2% of inflowing carbon, respectively. A CO2 evolution measurement system (CEMS) that monitored CO2 in the gas phase was developed to perform a complete carbon balance across the biofilm. The measurement system was able to determine whole-biofilm CO2 production rates in real time and showed that gaseous CO2 production accounted for 25% of inflowing carbon. In addition, the CEMS made it possible to measure biofilm response to changing environmental conditions; changes in temperature or inflowing carbon concentration were followed by a rapid response in biofilm metabolism and the establishment of new steady-state conditions

    Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity,Surface Hygroscopicity and Oligotrophy or Resilience

    No full text
    The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity, surface hygroscopicity, and nutrient availability on the interchange between these two types of behavior. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high relative humidity (RH) resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (ie., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high relative humidity, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation

    <i>Listeria monocytogenes</i> Biofilms Are Planktonic Cell Factories despite Peracetic Acid Exposure under Continuous Flow Conditions

    No full text
    Listeria monocytogenes biofilms are ubiquitous in the food-processing environment, where they frequently show resistance against treatment with disinfectants such as peracetic acid (PAA) due to sub-lethal damage resulting in biofilm persistence or the formation of secondary biofilms. L. monocytogenes serovar ½a EGD-e biofilms were cultivated under continuous flow conditions at 10 °C, 22 °C, and 37 °C and exposed to industrially relevant PAA concentrations. The effect of PAA on biofilm metabolic activity and biomass was monitored in real-time using the CEMS-BioSpec system, in addition to daily measurement of biofilm-derived planktonic cell production. Biofilm-derived planktonic cell yields proved to be consistent with high yields during biofilm establishment (≥106 CFU.mL−1). The exposure of biofilms to the minimum inhibitory PAA concentration (0.16%) resulted in only a brief disruption in whole-biofilm metabolic activity and biofilm biomass accumulation. The recovered biofilm accumulated more biomass and greater activity, but cell yields remained similar. Increasing concentrations of PAA (0.50%, 1.5%, and 4.0%) had a longer-lasting inhibitory effect. Only the maximum dose resulted in a lasting inhibition of biofilm activity and biomass–a factor that needs due consideration in view of dilution in industrial settings. Better disinfection monitoring tools and protocols are required to adequately address the problem of Listeria biofilms in the food-processing environment, and more emphasis should be placed on biofilms serving as a “factory” for cell proliferation rather than only a survival mechanism

    Listeria monocytogenes Biofilms Are Planktonic Cell Factories despite Peracetic Acid Exposure under Continuous Flow Conditions

    No full text
    Listeria monocytogenes biofilms are ubiquitous in the food-processing environment, where they frequently show resistance against treatment with disinfectants such as peracetic acid (PAA) due to sub-lethal damage resulting in biofilm persistence or the formation of secondary biofilms. L. monocytogenes serovar &frac12;a EGD-e biofilms were cultivated under continuous flow conditions at 10 &deg;C, 22 &deg;C, and 37 &deg;C and exposed to industrially relevant PAA concentrations. The effect of PAA on biofilm metabolic activity and biomass was monitored in real-time using the CEMS-BioSpec system, in addition to daily measurement of biofilm-derived planktonic cell production. Biofilm-derived planktonic cell yields proved to be consistent with high yields during biofilm establishment (&ge;106 CFU.mL&minus;1). The exposure of biofilms to the minimum inhibitory PAA concentration (0.16%) resulted in only a brief disruption in whole-biofilm metabolic activity and biofilm biomass accumulation. The recovered biofilm accumulated more biomass and greater activity, but cell yields remained similar. Increasing concentrations of PAA (0.50%, 1.5%, and 4.0%) had a longer-lasting inhibitory effect. Only the maximum dose resulted in a lasting inhibition of biofilm activity and biomass&ndash;a factor that needs due consideration in view of dilution in industrial settings. Better disinfection monitoring tools and protocols are required to adequately address the problem of Listeria biofilms in the food-processing environment, and more emphasis should be placed on biofilms serving as a &ldquo;factory&rdquo; for cell proliferation rather than only a survival mechanism

    Effect of carbon on whole-biofilm metabolic response to high doses of streptomycin

    Get PDF
    CITATION: Jackson, L. M. D., Kroukamp, O. & Wolfaardt, G. M. 2015. Effect of carbon on whole-biofilm metabolic response to high doses of streptomycin. Frontiers in Microbiology, 6:953, doi:10.3389/fmicb.2015.00953.The original publication is available at www.frontiersin.orgBiofilms typically exist as complex communities comprising multiple species with the ability to adapt to a variety of harsh conditions. In clinical settings, antibiotic treatments based on planktonic susceptibility tests are often ineffective against biofilm infections. Using a CO2 evolution measurement system we delineated the real-time metabolic response in continuous flow biofilms to streptomycin doses much greater than their planktonic susceptibilities. Stable biofilms from a multispecies culture (containing mainly Pseudomonas aeruginosa and Stenotrophomonas maltophilia), Gram-negative environmental isolates, and biofilms formed by pure culture P. aeruginosa strains PAO1 and PAO1 ΔMexXY (minimum planktonic inhibitory concentrations between 1.5 and 3.5 mg/l), were exposed in separate experiments to 4000 mg/l streptomycin for 4 h after which growth medium resumed. In complex medium, early steady state multispecies biofilms were susceptible to streptomycin exposure, inferred by a cessation of CO2 production. However, multispecies biofilms survived high dose exposures when there was extra carbon in the antibiotic medium, or when they were grown in defined citrate medium. The environmental isolates and PAO1 biofilms showed similar metabolic profiles in response to streptomycin; ceasing CO2 production after initial exposure, with CO2 levels dropping toward baseline levels prior to recovery back to steady state levels, while subsequent antibiotic exposure elicited increased CO2 output. Monitoring biofilm metabolic response in real-time allowed exploration of conditions resulting in vulnerability after antibiotic exposure compared to the resistance displayed following subsequent exposures.http://journal.frontiersin.org/article/10.3389/fmicb.2015.00953/fullPublisher's versio

    Pharmaceutical and personal care products (PPCPs) as endocrine disrupting contaminants (EDCs) in South African surface waters

    Get PDF
    CITATION: Archer, E., Wolfaardt, G. M., Van Wyk, J. H. 2017. Pharmaceutical and personal care products (PPCPs) as endocrine disrupting contaminants (EDCs) in South African surface waters. Water SA, 43(4):684-706, doi:10.4314/wsa.v43i4.16.The original publication is available at http://www.wrc.org.zaGlobally, water resources are under constant threat of being polluted by a diverse range of man-made chemicals, and South Africa is no exception. These contaminants can have detrimental effects on both human and wildlife health. It is increasingly evident that several chemicals may modulate endocrine system pathways in vertebrate species, and these are collectively referred to as endocrine disrupting contaminants (EDCs). Although the endocrine-disrupting effect of water pollutants has been mainly linked to agricultural pesticides and industrial effluents, other pollutants such as pharmaceuticals and personal care products (PPCPs) are largely unnoticed, but also pose a potentially significant threat. Here we present for the first time in a South African context, a summarised list of PPCPs and other EDCs detected to date within South African water systems, as well as their possible endocrine-disrupting effect in-vitro and in-vivo. This review addresses other factors which should be investigated in future studies, including endocrine disruption, PPCP metabolites, environmental toxicology, and antibiotic resistance. The challenges of removing EDCs and other pollutants at South African wastewater treatment works (WWTWs) are also highlighted. The need for focused research involving both in-vitro and in-vivo studies to detect PPCPs in water systems, and to delineate adverse outcome pathways (AOPs) of priority PPCPs to aid in environmental impact assessment (EIA), are discussed.Publisher's versio
    corecore