142 research outputs found

    Reflection of Scandinavian Ice Sheet Fluctuations in Norwegian Sea Sediments during the Past 150,000 Years

    Get PDF
    The record of glacier fluctuations in western Scandinavia, as reconstructed from continental data, has been correlated with records of ice-rafted detritus (IRD) from well-dated sediment cores from the Norwegian Sea covering the past 150,000 yr B.P. The input of IRD into the ocean is used as a proxy for ice sheet advances onto the shelf and, thus, for the calibration of a glaciation curve. The marine results generally support land-based reconstructions of glacier fluctuations and improve the time-control on glacial advances. The Saalian ice sheet decayed very rapidly approximately 125,000 yr B.P. In the Early Weichselian, a minor but significant IRD maximum indicates the presence of icebergs in isotope substage 5b (especially between 95,000 and 83,000 yr B.P.). Reduced amounts of calcareous nannofossils indicate that surface waters were influenced by meltwater discharges during isotope substages 5d and 5b. An extensive build-up of inland ice began again during isotope stage 4, but maximum glaciation was reached only in early stage 3 (58,000-53,000 yr B.P.). Marine sediments have minimum carbonate content, indicating strong dilution by lithogenic ice-rafted material. Generally, the IRD accumulation rate was considerably higher in stages 4-2 than in stage 5. A marked peak in IRD accumulation rates from 47,000 to 43,000 yr B.P. correlates well with a second Middle Weichselian ice sheet advance dated by the Laschamp/Olby paleomagnetic event. Minimum ice extent during the Ålesund interstade (38,500-32,500 yr B.P.) and several glacial oscillations during the Late Weichselian are also seen in the IRD record. Of several late Weichselian glacial oscillations on the shelf, at least four correspond to the North Atlantic Heinrich events. Ice sheet behavior was either coupled or linked by external forcing during these events, whereas internal ice sheet mechanisms may account for the noncoherent fluctuations

    Life History of Female Preferences for Male Faces: A Comparison of Pubescent Girls, Nonpregnant and Pregnant Young Women, and Middle-aged Women

    Get PDF
    Although scientific interest in facial attractiveness has developed substantially in recent years, few studies have contributed to our understanding of the ontogeny of facial preferences. In this study, attractiveness of 30 male faces was evaluated by four female groups: girls at puberty, nonpregnant and pregnant young women, and middle-aged women. The main findings are as follows: (1) Preference for sexy-looking faces was strongest in young, nonpregnant women. (2) Biologically more mature girls displayed more adultlike preferences. (3) The intragroup consistency for postmenopausal women was relatively low. (4) In terms of the preference pattern, pregnant women were more similar to perimenopausal women than they were to their nonpregnant peers. (5) Preference for youthful appearance decreased with the age of the women. I argue that the life history of female preferences for male faces is, to a large extent, hormone-driven and underpinned by a set of evolutionary adaptations

    Mechanical design of the optical modules intended for IceCube-Gen2

    Get PDF
    IceCube-Gen2 is an expansion of the IceCube neutrino observatory at the South Pole that aims to increase the sensitivity to high-energy neutrinos by an order of magnitude. To this end, about 10,000 new optical modules will be installed, instrumenting a fiducial volume of about 8 km3. Two newly developed optical module types increase IceCube’s current sensitivity per module by a factor of three by integrating 16 and 18 newly developed four-inch PMTs in specially designed 12.5-inch diameter pressure vessels. Both designs use conical silicone gel pads to optically couple the PMTs to the pressure vessel to increase photon collection efficiency. The outside portion of gel pads are pre-cast onto each PMT prior to integration, while the interiors are filled and cast after the PMT assemblies are installed in the pressure vessel via a pushing mechanism. This paper presents both the mechanical design, as well as the performance of prototype modules at high pressure (70 MPa) and low temperature (−40∘C), characteristic of the environment inside the South Pole ice

    The next generation neutrino telescope: IceCube-Gen2

    Get PDF
    The IceCube Neutrino Observatory, a cubic-kilometer-scale neutrino detector at the geographic South Pole, has reached a number of milestones in the field of neutrino astrophysics: the discovery of a high-energy astrophysical neutrino flux, the temporal and directional correlation of neutrinos with a flaring blazar, and a steady emission of neutrinos from the direction of an active galaxy of a Seyfert II type and the Milky Way. The next generation neutrino telescope, IceCube-Gen2, currently under development, will consist of three essential components: an array of about 10,000 optical sensors, embedded within approximately 8 cubic kilometers of ice, for detecting neutrinos with energies of TeV and above, with a sensitivity five times greater than that of IceCube; a surface array with scintillation panels and radio antennas targeting air showers; and buried radio antennas distributed over an area of more than 400 square kilometers to significantly enhance the sensitivity of detecting neutrino sources beyond EeV. This contribution describes the design and status of IceCube-Gen2 and discusses the expected sensitivity from the simulations of the optical, surface, and radio components

    Sensitivity of IceCube-Gen2 to measure flavor composition of Astrophysical neutrinos

    Get PDF
    The observation of an astrophysical neutrino flux in IceCube and its detection capability to separate between the different neutrino flavors has led IceCube to constraint the flavor content of this flux. IceCube-Gen2 is the planned extension of the current IceCube detector, which will be about 8 times larger than the current instrumented volume. In this work, we study the sensitivity of IceCube-Gen2 to the astrophysical neutrino flavor composition and investigate its tau neutrino identification capabilities. We apply the IceCube analysis on a simulated IceCube-Gen2 dataset that mimics the High Energy Starting Event (HESE) classification. Reconstructions are performed using sensors that have 3 times higher quantum efficiency and isotropic angular acceptance compared to the current IceCube optical modules. We present the projected sensitivity for 10 years of data on constraining the flavor ratio of the astrophysical neutrino flux at Earth by IceCube-Gen2

    Deep Learning Based Event Reconstruction for the IceCube-Gen2 Radio Detector

    Get PDF
    The planned in-ice radio array of IceCube-Gen2 at the South Pole will provide unprecedented sensitivity to ultra-high-energy (UHE) neutrinos in the EeV range. The ability of the detector to measure the neutrino’s energy and direction is of crucial importance. This contribution presents an end-to-end reconstruction of both of these quantities for both detector components of the hybrid radio array (\u27shallow\u27 and \u27deep\u27) using deep neural networks (DNNs). We are able to predict the neutrino\u27s direction and energy precisely for all event topologies, including the electron neutrino charged-current (νe-CC) interactions, which are more complex due to the LPM effect. This highlights the advantages of DNNs for modeling the complex correlations in radio detector data, thereby enabling a measurement of the neutrino energy and direction. We discuss how we can use normalizing flows to predict the PDF for each individual event which allows modeling the complex non-Gaussian uncertainty contours of the reconstructed neutrino direction. Finally, we discuss how this work can be used to further optimize the detector layout to improve its reconstruction performance
    corecore