5,842 research outputs found

    De Facto Segregation in Low-Rent Public Housing

    Get PDF

    Bringing Context Inside Process Research with Digital Trace Data

    Get PDF
    Context is usually conceptualized as “external” to a theory or model and treated as something to be controlled or eliminated in empirical research. We depart from this tradition and conceptualize context as permeating processual phenomena. This move is possible because digital trace data are now increasingly available, providing rich and fine-grained data about processes mediated or enabled by digital technologies. This paper introduces a novel method for including fine-grained contextual information from digital trace data within the description of process (e.g., who, what, when, where, why). Adding contextual information can result in a very large number of fine-grained categories of events, which are usually considered undesirable. However, we argue that a large number of categories can make process data more informative for theorizing and that including contextual detail enriches the understanding of processes as they unfold. We demonstrate this by analyzing audit trail data of electronic medical records using ThreadNet, an open source software application developed for the qualitative visualization and analysis of process data. The distinctive contribution of our approach is the novel way in which we contextualize events and action in process data. Providing new, usable ways to incorporate context can help researchers ask new questions about the dynamics of processual phenomena

    Precision Mass Measurements of 129-131Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process

    Full text link
    Masses adjacent to the classical waiting-point nuclide 130Cd have been measured by using the Penning- trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N = 82 shell gap below the doubly magic 132Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A = 128 - 132 region and a reduction of the uncertainties from the precision mass input data

    The Star Formation and Extinction Co-Evolution of UV-Selected Galaxies over 0.05<z<1.2

    Get PDF
    We use a new stacking technique to obtain mean mid IR and far IR to far UV flux ratios over the rest near-UV/near-IR color-magnitude diagram. We employ COMBO-17 redshifts and COMBO-17 optical, GALEX far and near UV, Spitzer IRAC and MIPS Mid IR photometry. This technique permits us to probe infrared excess (IRX), the ratio of far IR to far UV luminosity, and specific star formation rate (SSFR) and their co-evolution over two orders of magnitude of stellar mass and redshift 0.1<z<1.2. We find that the SSFR and the characteristic mass (M_0) above which the SSFR drops increase with redshift (downsizing). At any given epoch, IRX is an increasing function of mass up to M_0. Above this mass IRX falls, suggesting gas exhaustion. In a given mass bin below M_0 IRX increases with time in a fashion consistent with enrichment. We interpret these trends using a simple model with a Schmidt-Kennicutt law and extinction that tracks gas density and enrichment. We find that the average IRX and SSFR follows a galaxy age parameter which is determined mainly by the galaxy mass and time since formation. We conclude that blue sequence galaxies have properties which show simple, systematic trends with mass and time such as the steady build-up of heavy elements in the interstellar media of evolving galaxies and the exhaustion of gas in galaxies that are evolving off the blue sequence. The IRX represents a tool for selecting galaxies at various stages of evolution.Comment: Accepted for publication in GALEX Special Ap.J.Suppl., December, 200

    Structural brain preservation: a potential bridge to future medical technologies

    Get PDF
    When faced with the prospect of death, some people would prefer a form of long-term preservation that may allow them to be restored to healthy life in the future, if technology ever develops to the point that this is feasible and humane. Some believe that we may have the capacity to perform this type of experimental preservation today—although it has never been proven—using contemporary methods to preserve the structure of the brain. The idea is that the morphomolecular organization of the brain encodes the information required for psychological properties such as personality and long-term memories. If these structures in the brain can be maintained intact over time, this could theoretically provide a bridge to access restorative technologies in the future. To consider this hypothesis, we first describe possible metrics that can be used to assess structural brain preservation quality. We next explore several possible methods to preserve structural information in the brain, including the traditional cryonics method of cryopreservation, as well as aldehyde-stabilized cryopreservation and fluid preservation. We focus in-depth on fluid preservation, which relies on aldehyde fixation to induce chemical gel formation in a wide set of biomolecules and appears to be a cost-effective method. We describe two theoretical recovery technologies, alongside several of the ethical and legal complexities of brain preservation, all of which will require a prudent approach. We believe contemporary structural brain preservation methods have a non-negligible chance of allowing successful restoration in the future and that this deserves serious research efforts by the scientific community

    Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918

    Get PDF
    The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized

    Impact of Acceptor Quadrupole Moment on Charge Generation and Recombination in Blends of IDT-Based Non-Fullerene Acceptors with PCE10 as Donor Polymer

    Get PDF
    Advancing non-fullerene acceptor (NFA) organic photovoltaics requires the mitigation of the efficiency-limiting processes. Acceptor end-group and side-chain engineering are two handles to tune properties, and a better understanding of their specific impact on the photophysics could facilitate a more guided acceptor design. Here, the device performance, energetic landscape, and photophysics of rhodanine and dicyanovinyl end-capped IDT-based NFAs, namely, O-IDTBR and O-IDTBCN, in PCE10-based solar cells are compared by transient optical and electro-optical spectroscopy techniques and density functional theory calculations. It is revealed how the acceptors’ quadrupole moments affect the interfacial energetic landscape, in turn causing differences in exciton quenching, charge dissociation efficiencies, and geminate versus non-geminate recombination losses. More precisely, it is found that the open circuit voltage (VOC) is controlled by the acceptors’ electron affinity (EA), while geminate and non-geminate recombination, and the field dependence of charge generation, rely on the acceptors’ quadrupole moments. The kinetic parameters and yields of all processes are determined, and it is demonstrated that they can reproduce the performance differences of the devices’ current–voltage characteristics in carrier drift-diffusion simulations. The results provide insight into the impact of the energetic landscape, specifically the role of the quadrupole moment of the acceptor, beyond trivial considerations of the donor–acceptor energy offsets

    Coherent spin valve phenomena and electrical spin injection in ferromagnetic/semiconductor/ferromagnetic junctions

    Full text link
    Coherent quantum transport in ferromagnetic/ semiconductor/ ferromagnetic junctions is studied theoretically within the Landauer framework of ballistic transport. We show that quantum coherence can have unexpected implications for spin injection and that some intuitive spintronic concepts which are founded in semi-classical physics no longer apply: A quantum spin-valve (QSV) effect occurs even in the absence of a net spin polarized current flowing through the device, unlike in the classical regime. The converse effect also arises, i.e. a zero spin-valve signal for a non-vanishing spin-current. We introduce new criteria useful for analyzing quantum and classical spin transport phenomena and the relationships between them. The effects on QSV behavior of spin-dependent electron transmission at the interfaces, interface Schottky barriers, Rashba spin-orbit coupling and temperature, are systematically investigated. While the signature of the QSV is found to be sensitive to temperature, interestingly, that of its converse is not. We argue that the QSV phenomenon can have important implications for the interpretation of spin-injection in quantum spintronic experiments with spin-valve geometries.Comment: 15 pages including 11 figures. To appear in PR
    • 

    corecore