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Abstract 

Context is usually conceptualized as “external” to a theory or model and treated as something to be 

controlled or eliminated in empirical research. We depart from this tradition and conceptualize 

context as permeating processual phenomena. This move is possible because digital trace data are 

now increasingly available, providing rich and fine-grained data about processes mediated or enabled 

by digital technologies. This paper introduces a novel method for including fine-grained contextual 

information from digital trace data within the description of process (e.g., who, what, when, where, 

why). Adding contextual information can result in a very large number of fine-grained categories of 

events, which are usually considered undesirable. However, we argue that a large number of 

categories can make process data more informative for theorizing and that including contextual detail 

enriches the understanding of processes as they unfold. We demonstrate this by analyzing audit trail 

data of electronic medical records using ThreadNet, an open source software application developed 

for the qualitative visualization and analysis of process data. The distinctive contribution of our 

approach is the novel way in which we contextualize events and action in process data. Providing 

new, usable ways to incorporate context can help researchers ask new questions about the dynamics 

of processual phenomena. 

Keywords: Narrative Networks, Process Analysis, Routines, Processual Phenomena, Digital Trace 

Data, Electronic Medical Records 
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1 Introduction 

In this paper, we develop an approach for 

incorporating context in the analysis and visualization 

of digital trace data in order to theorize about 

processual phenomena. In empirical research, context 

is often seen as an external or situational threat to be 

controlled or eliminated (Avgerou, 2019). Researchers 

try to control for context in an effort to increase 

generalizability (Schofield, 2002; Whetten, 2009), 

identify causality, improve robustness (Johns, 2006), 

and so forth. This is unfortunate because one of the 

deepest and most influential theoretical insights in 

information systems research has been that context 

matters (Avgerou, 2019; Burton-Jones & Volkoff, 

2017; Hong et al., 2014). The web model of computing 

(Kling & Scacchi, 1982), the ensemble view of IT 

artifacts (Orlikowski & Iacono, 2001), and the 

sociomaterial view of technology in general 

(Orlikowski & Scott, 2008) all show that technology is 
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mangled (Pickering, 2010), entangled (Orlikowski, 

2007) and imbricated (Leonardi, 2011) with its social 

and material context. As Swanson (2019) argues, 

technologies come alive in the world to the extent that 

they inhabit recognizable, repetitive patterns of actions 

(Feldman & Pentland, 2003; Leonardi, 2011). This 

entanglement is processual, in the sense that it unfolds 

and emerges over time (Emirbayer, 1997; Tsoukas & 

Chia, 2002). For example, just as work can no longer 

be meaningfully decoupled from technology 

(Orlikowski & Scott, 2008), so too is everyday life 

increasingly permeated by digital technology 

(Lyytinen & Yoo, 2002; Yoo, 2010). The context of IS 

phenomena is no longer restricted to the organizational 

container (Winter et al., 2014); therefore, context 

should feature much more prominently in our research 

(Avgerou, 2019). 

However, how this insight should be operationalized in 

research practice remains unclear. For research that 

embraces the importance of context, contextual 

entanglement has most often been described and 

analyzed through ethnographic fieldwork (e.g., 

Burton-Jones & Volkoff, 2017; Orlikowski, 2000), 

because on-site fieldworkers are ideally positioned to 

see and describe situational effects in context 

(Charmaz, 2006). Fieldwork has been extremely 

fruitful for theory building but when the entanglement 

stretches across time and space, and physical and 

digital worlds (Baskerville, Myers, & Yoo, 2020), it 

may be impractical.  

To help remedy this limitation, the use of digital trace 

data has been proposed as a way to extend reach 

(Berente, Seidel, & Safadi, 2019; Levina & Vaast, 

2015). Digital trace data provide evidence of activities 

and events that are logged and stored digitally 

(Freelon, 2014, p. 59). Since almost everything people 

do is now mediated by digital technologies (Yoo, 

2010), digital trace data looms as an exciting prospect 

that qualitative scholars can use to theorize about the 

emergence and unfolding of processual phenomena. 

Therefore, research has called for qualitative scholars 

to lean on computational approaches (Lazer et al., 

2009) involving automated data processing and 

algorithmic pattern recognition and analysis to help 

them discover patterns in the vast digital volumes of 

digital trace data that may otherwise be undiscoverable 

even to trained qualitative scholars (Lindberg, 2020). 

However, most computational tools available to 

qualitative scholars interested in process are strikingly 

ignorant of context. For example, many kinds of tools 

exist for process mining and modeling but they 

incorporate context to a very limited extent, if at all. 

Van Der Aalst and Dustdar (2012) advocate for the 

importance of context, but they identify four levels of 

context (instance, process, social, and external) that all 

exist outside the execution of the process. They do not 

consider contextual factors within the execution of a 

process (e.g., who performs what step with what tool). 

Process mining (Breuker et al., 2016; van der Aalst, 

2011b) typically reduces processes to a single 

dimension (a stream of time-stamped actions). Process 

models (Recker et al., 2009) show actions and actors 

as they are designed but they fail to incorporate the 

contextual circumstances under which the dynamics of 

such a process might change during enactment 

(Rosemann, Recker, & Flender, 2008). Likewise, 

computational tools that can handle processual data, 

such as social network analysis (Wassermann & Faust, 

1994) or sequence analysis (Abbott, 1995), reduce 

digital traces to variables such as actors (for social 

networks) or events (for sequence analysis). 

Paradoxically, the analysis of digital trace data for 

developing process theory is mostly devoid of the 

context that is paramount to the unfolding and 

situatedness of the processes that scholars seek to 

explain. 

In this paper, we describe a novel way of representing 

and visualizing contextual entanglements in processual 

phenomena that overcomes this limitation. We build 

on the concept of narrative networks (Pentland & 

Feldman, 2007), a special kind of directed graph where 

the nodes are categories of events and the edges 

represent sequential relations between those events 

(Pentland, Recker, & Wyner, 2017c). Narrative 

networks were introduced for the purpose of 

representing patterns of technology in use. They have 

been applied in field research and simulation (Pentland 

et al. 2012) but the emphasis has thus far been on 

representing patterns of action. In these action-only 

models, as with other techniques for process mining 

(van der Aalst, Weijters, & Maruster, 2004) and 

modeling (Breuker et al., 2016; Recker et al., 2009), 

processes are disembodied and dissociated from their 

sociomaterial context.  

Here, we advance the state of the art by incorporating 

context in a novel, systematic way. Instead of viewing 

context as a temporal, geographical, cultural, 

cognitive, emotional, or other type of outside 

“environing” (Avgerou, 2019, p. 978), we locate 

context inside processes by using contextual factors 

available in digital trace data to define events in the 

narrative network. This is a key departure from 

established traditions that view context as something 

outside a process (e.g., weather, location) (Rosemann 

et al., 2008; van der Aalst & Dustdar, 2012). Instead of 

stripping these variables from digital trace data to 

make the data fit the format of process analysis tools, 

such as eXtensible Event Stream (Bala et al., 2018), we 

let context permeate everything: we use it to define the 

events that make up the process at it unfolds. 

The advantage of bringing context inside the process is 

that contextual factors can be included at any level of 

granularity so that context can change as fast as the 

process itself. Adding contextual factors in this way 
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can result in a combinatoric explosion of fine-grained 

categories of events (e.g., who * what * when * where 

* how, and so forth). In ethnographic research, the 

presence of the researcher helps manage the 

combinatoric explosion but the scope of research is 

limited to the here and now (Myers, 2009). The 

abundance of digital trace data overcomes this 

limitation but at the cost of data explosion (Lindberg, 

2020). The prevailing wisdom is that this proliferation 

is undesirable but, as we will demonstrate, it results in 

two transformative insights:  

The first insight is that large numbers of fine-grained 

categories can be useful to theory development. This 

contradicts prevailing wisdom about the necessity of 

re-coding data into more abstract second- or third-

order categories for rigor, conceptual clarity, and 

theoretical scaling (Gioia, Corley, & Hamilton, 2013; 

Urquhart, 2013). We discovered that a larger number 

of fine-grained categories of events in a narrative 

network resulted in a much clearer, more readily 

interpretable visualization of the process. By analogy, 

more pixels make a clearer picture.  

The second insight results from the way that absence 

highlights presence. The relationship between 

absence/presence is a general principle in semiotics 

(Derrida, 1981; Eco, 1976; Rotman, 2016) but it is 

overlooked in conventional research methods where 

only presence is considered relevant. If hundreds of 

fine-grained categories are visualized as a network of 

sequentially related events, it is the absence of 

connected events (the white space) that makes the 

processual structure visible and interpretable. While 

context is sometimes seen as “muddying the waters” in 

conventional research (Avgerou, 2019), adding more 

contextual factors tends to disentangle and clarify 

process visualizations. To the extent that structural 

regularities are present in the context (e.g., division of 

labor), inclusion of more contextual factors will result 

in more white space (lower density), which will 

enhance the clarity and interpretability of the 

visualization.  

To make our approach useful to IS research practice, 

we operationalize our insights with a software 

application called ThreadNet. ThreadNet is an open 

source R package that we have been developing with 

support from the National Science Foundation, as part 

of a larger research program (Antecedents of 

Complexity in Healthcare Routines, NSF SES-

1734327). In this paper, we introduce ThreadNet and 

demonstrate how to use ThreadNet by visualizing the 

processes in a dermatology clinic at the University of 

Rochester Medical Center. ThreadNet is a flexible 

software for process data analysis that allows 

researchers to freely choose contextual information to 

be included in the definition of events that make up a 

process. It manages the combinatorics of context and 

makes it easy to see and compare how social/material 

contextual factors are entangled with processual 

phenomena. Without a convenient tool for 

visualization, the conceptual insights described here 

would never have emerged.  

We begin by defining the essential theoretical concepts 

that provide a foundation for our work: process, events, 

context, and digital trace data. Then, we describe how 

narrative networks allow for the definition of events 

through context, thereby making the critical 

conceptual move: bringing context inside the 

representation of process rather than leaving it on the 

outside. We demonstrate this approach by visualizing 

the electronic medical record (EMR) audit trail from a 

dermatology clinic. This example shows how the 

record keeping process is entangled with its social and 

material context. The example is typical of healthcare 

processes (Plsek & Wilson, 2001), and we present it as 

the complex sociomaterially entangled mess that it is 

expected to be (van der Aalst, 2011a). We then 

demonstrate how, as contextual factors are 

added, ThreadNet disentangles the visualization in 

clearer, more comprehensible ways. Next, we compare 

our approach to other processual and qualitative data 

analysis tools to clarify the conceptual and 

methodological novelty and transformative potential 

of our work. Finally, we discuss the implications, 

possibilities, and limits of this approach for process 

scholarship in information systems and beyond.  

2 Essential Concepts  

This paper builds on concepts and terminology from a 

diverse set of theoretical traditions, from process mining 

to structural linguistics. In this section, we present the 

bare essentials necessary to understand our analysis of 

the EMR record keeping process. After presenting the 

example, we compare the concepts presented here to 

related work in information systems and other fields.  

2.1 Processual Phenomena  

The framework presented here places processual 

phenomena in the foreground (Emirbayer, 1997; 

Langley and Tsoukas, 2016). By processual 

phenomena, we mean any progression of events that 

unfolds over time (Abbott, 2016; Tsoukas & Chia, 

2002), such as routines, projects, workflows, or business 

processes. As these examples suggest, we intend to 

encompass a broad range of processual phenomena, 

independent of the level of granularity (e.g., sequences 

of tasks, actions, processes, workflows, life stages), 

timing (e.g., by seconds, minutes, years) or extent of 

formalism (e.g., routine, business process, action 

pattern, algorithm). In what follows, we will use the 

collective label “process” to refer to any kind of 

processual phenomena. 



Bringing Context Inside Process Research 

 

1217 

2.2 Processes Are Sequences of Events 

Processes can be conceptualized as recognizable, 

repetitive sequences of events that unfold over time 

(Abbott, 2016; Pentland, Haerem, & Hillison, 2010; 

Tsoukas & Chia, 2002). Events are abstract categories 

formed from instantaneous observations or 

occurrences (Pentland & Liu, 2017). This translation 

from occurrences to events is the essential first step in 

theorizing about sequential data (Abbott, 1990)—we 

observe occurrences, but we theorize about events. In 

particular, the sequential relation between events 

describes how a process unfolds over time (Pentland, 

1999). 

Of course, events with duration can overlap in time 

(e.g., in preparing spaghetti, one might cook the pasta 

while making the sauce). In the data analyzed here, we 

treat events as instantaneous. To capture duration and 

overlap, “cooking the pasta” would be represented as a 

series of finer-grained occurrences (put the pasta in the 

water, check doneness, drain the pasta…) that mark the 

start and stop times of various activities. Overlapping 

activities could also be modeled as part of the 

constantly changing context. Thus, it is always 

possible to regard events as sequentially related.  

2.3 Events are Defined by Context 

Within a process, events are defined by “what 

happens,” but also by contextual specifics such as the 

time (now, later, ... ), place (here, there, ... ), subject 

(me, you, ... ), and so on (Barnes & Law, 1976; 

Heritage, 2013). Speech acts (Austin, 1962) serve as 

an illustration for this idea because their functional 

effect depends on the context of the utterance. For 

example, “I pronounce you husband and wife,” has a 

different effect depending on who says it and who is 

present when it is said. In short, events are defined by 

context (i.e., the circumstances that form the setting for 

an event).1 

2.4 Situational and Sequential Context  

Events typically occur as part of larger sequences that 

form a process, such as a business process, a workflow, 

or a routine (Bose & van der Aalst, 2009). To illustrate, 

Figure 1 shows a set of typical contextual factors 

changing over time. Each row represents an event, 

each column represents a dimension of context. Figure 

1 echoes van de Ven & Poole’s (1990) classic 

framework for research on innovation processes—a set 

of factors that change over time.  

Figure 1 differentiates context into two dimensions: 

situational and sequential context. In research 

paradigms derived from classical linguistics, 

situational and sequential context would be referred to 

as the paradigmatic and syntagmatic dimensions (de 

Saussure, 1974). Situational context refers to the 

situational particulars that might be used to describe 

occurrences in any process, routine, or story: e.g., who, 

what, where, why (Burke, 1962). Sequential context 

arises because, in practice, nothing happens in 

isolation; events are always located in an on-going 

sequence of other events (Bose & van der Aalst, 2009; 

Goh & Pentland, 2019). In traditional process terms, 

this is the timestamp that signals when an event 

occurred and which occurrences form part of that 

event. 

 

Figure 1. Events in Processes Are Defined by Situational and Sequential Context 

 
1 This definition of context draws on the idea of frames as the 

definition of the situation as an excerpt of ongoing activity 

(Goffman, 1974, pp. 10-11): Depending on which 

circumstances are chosen, the definition of a situation (i.e., 

an event) changes. 
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Table 1. Temporal Layers of Analysis 

Event Thread Processual phenomenon 

Check-in with 

receptionist 

(seconds-minutes) 

Visit to dermatology 

clinic 

(hours) 

EMR record keeping 

(on-going and  

constantly changing) 

There are several essential concepts here. First, as 

Figure 1 shows, context is crucial to the idea of process 

(Abbott, 2016; Pettigrew, 1997). Change implies a 

baseline or a point of reference from which a difference 

is discerned. Without context, it is impossible to detect 

or even conceptualize change (Pettigrew, 2012). 

Second, context has multiple layers (Rosemann et al., 

2008). These layers can change on different time 

scales, as shown in Table 1. Some contextual 

dimensions may change quickly while others may 

remain relatively stable, giving them different roles in 

understanding the process that unfolds. For example, it 

is natural to define events in terms of the aspects of 

context that change most quickly (e.g., specific actions 

by specific actors). Contextual attributes that change 

most slowly, such as the clinic location, are likely to be 

external dimensions of context and typical dimensions 

of comparison (Avgerou, 2019; van der Aalst & 

Dustdar, 2012). One could compare routines between 

two or more clinics, for example. All of these layers of 

context coexist in each occurrence, as shown in Figure 

1, but their different types and roles have typically not 

been incorporated into existing approaches to process 

analysis and theorizing.  

Another essential concept is that the definition of an 

event is not predetermined; it depends on what 

contextual dimensions one chooses to include. For 

example, events can be defined in terms of contextual 

attributes that change more slowly than the data in an 

event log. For example, it would be perfectly natural to 

define each patient visit as a single event (based on the 

visit ID), although it might consist of hundreds of fine-

grained events from check-in to check-out. As 

mentioned earlier, this provides a natural way to 

represent duration and overlap, if so desired.  

Finally, we note that contextual dimensions may be 

correlated or aligned (Kim et al., 2019) to varying 

degrees. For example, in an idealized world, each actor 

might perform one task with the same tool in a single 

location. If so, those contextual dimensions would be 

perfectly aligned; using an additional dimension to 

describe the action would not add information.  

To summarize, while the importance of context has 

long been recognized in process mining and modeling 

(Bose & van der Aalst, 2009; Rosemann et al., 2008), 

it has been conceptualized and operationalized as 

something that exists outside of processes (Rosemann 

et al., 2008). Moreover, context has usually been seen 

as static and atemporal (Pettigrew, 2012). Our 

conceptual move is to put context inside the definition 

of process, allowing it to be as dynamic and 

performative as the process itself. Putting context 

inside the process mixes the “in-here” and the “out-

there” (Hernes, 2007, p. 2). This move sets the stage 

for a novel approach to conceptualizing and analyzing 

dynamic, processual phenomena. 

2.5 Narrative Networks: A Framework to 

Explicitly Incorporate Context  

Narrative networks provide a way to incorporate 

situational and sequential context into the definition of 

events that are constitutive of processual phenomena. 

The narrative network was introduced as a method for 

describing technology-in-use within the repetitive, 

recognizable patterns of events that characterize 

organizational routines (Pentland & Feldman, 2007). 

Formally, a narrative network is a weighted, directed 

graph where the nodes represent categories of events 

and the edges represent sequential relationships 

between those categories (Pentland et al., 2017c).  

It is important to be clear about what this class of 

network does and does not represent. First, the nodes 

in a narrative network represent categories of events. 

For example, in a medical clinic, a typical event would 

be: “The nurse takes your blood pressure.” Traditional 

process models represent the descriptive or constative 

nature of processes (Recker et al., 2009; van der Aalst, 

1998), such as, for example, the declaration “take 

blood pressure,” then “record blood pressure.” In 

contrast, narrative networks represent performative 

trajectories (Hernes, 2017), i.e., accounts of what 

happens, what is being done. As Hernes (2017, p. 604) 

argues: “Events … are not to be seen as representative 

of a trajectory, but as performing the trajectory. Every 

event takes [an] active part in performing the temporal 

trajectory, by defining the present events in the context 

of its predecessors and antecedent events.” 

This view entails the assumption that the social world 

is a continually unfolding process and thus the 

“dynamic, unfolding process becomes the primary unit 

of analysis rather than the constituent elements 

themselves” (Emirbayer, 1997, p. 287). So, while each 

constituent event is performative, when they are 
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sequentially related in a set of threads (or paths, Goh 

& Pentland, 2019, or in Hernes’s (2017, p. 604) terms, 

trajectories) and incorporated into a network of events, 

the overall performative effect unfolds.   

Second, a narrative network represents sequential 

relationships between events, defined as actions, 

activities, or processes (depending on vocabulary and 

granularity used to define and label the nodes). These 

networks do not correspond to social networks (the 

nodes are events, not people), flowcharts or petri nets 

(they do not model state changes), or Markov models 

(the nodes do not represent system states). Unlike these 

more familiar classes of networks, the nodes represent 

categories of events in a domain. The edges indicate 

temporally sequential adjacency of those events along 

a set of observed threads (e.g., “college first, then 

graduate school”), but they do not necessarily indicate 

causality. Past events influence future events but they 

do not determine them (Goh & Pentland, 2019).  

2.5.1 Situational Context Enters via 

Definition of the Nodes of the Network  

Our conceptual move is that we broaden how events in 

narrative networks are defined. Published examples of 

narrative networks have included nodes defined by 

actions, such as those in an invoice processing system 

(Pentland et al., 2010). Occasionally, the events have 

been defined as both actions and actors. Goh et al. 

(2011), for example, use narrative networks to identify 

where and how the introduction of health information 

technology changes sequences of actions performed by 

actors. Yeow and Faraj (2011) use narrative networks 

to investigate changes to actors and actions resulting 

from an ERP implementation.  

These examples show that there is merit to 

representing processual phenomena as events in a 

narrative network but we also see that current 

applications tend to limit their inclusion of context to 

actions, people, or technology, but never to all three 

simultaneously nor to additional contexts such as 

location, reason, date and/or time. Event definitions in 

the literature to date have generally been limited to 

“action” or “action-actor.” We have previously 

demonstrated how action- or actor-only network 

graphs skew our view of what is going on, e.g., what 

constitutes a handoff (Pentland et al., 2017c). We now 

demonstrate below how a richer, more contextualized 

definition of events changes the narrative network and 

thus changes how the processual phenomena are 

represented and what might be learned about them. 

2.5.2 Sequential Context Enters via the Edges 

of the Network  

The idea of tracing associations between actions is 

based on the idea that actions do not happen in 

isolation—they occur as part of streams of activity, 

thus forming an action-centric view of the world 

(Pentland, Pentland, & Calantone, 2017a). Musicians 

rarely just play one note; they play tunes. The 

sequential relationship is determined empirically by 

tracing the sequence of actions within a thread. These 

networks can be automatically constructed from 

“traces” (Bala et al., 2018; De Weerdt et al., 2013) in 

computerized event logs, middleware or other forms of 

digital trace data. Using digital trace data, i.e., digitally 

recorded and time-stamped logs of sequential events, 

thus opens new possibilities for expanding both 

conceptual and empirical views. 

2.6 Contextualizing Digital Trace Data  

Methodologically, the value of our approach (defining 

events by combining relevant contextual factors) rests 

on the assumption that data about different layers and 

changes of context are available. Ethnographic 

fieldwork allows researchers to access context through 

immersion or embeddedness (Feldman, 1995; Lewis & 

Russell, 2011). However, fieldwork is ill-equipped to 

handle the large volume of data traces now collected 

and stored on digital platforms (Floridi, 2012). Just as 

processes of work and organizing cannot meaningfully 

be decoupled from technology anymore (Orlikowski, 

2007; Orlikowski & Scott, 2008), all aspects of life are 

increasingly mediated by digital technology (Alaimo 

& Kallinikos, 2017; Yoo, 2010). 

Digital trace data is inherently processual in nature. As 

the name suggests, it “traces”, i.e., connects actions 

and events enabled or mediated by digital technologies 

as they unfold over time: it captures the sequence of 

events that constitutes a process because it includes 

time-stamped logs of activities and events enacted 

through digital technologies or platforms. This allows 

more precise and more voluminous data on actions and 

events than other traditional modes of collection such 

as observations, interviews, or archival data (Schensul, 

Schensul, & LeCompte, 1999). 

Digital trace data provide opportunities for qualitative 

scholars (Sundararajan et al., 2013) but also require 

serious methodological adjustment to the particulars of 

this new type of data (George et al., 2016). For 

example, when confronted with digital trace data, 

qualitative scholars tend to become overwhelmed by 

the sheer size of these datasets (Lindberg, 2020). 

Moreover, digital trace data are organic, not designed, 

so they are inherently susceptible to validity issues 

(Xu, Zhang, & Zhou, 2020). Also, digital trace data can 

be both heterogeneous and unstructured (Dhar, 2013), 

making it difficult to analyze and confront the meaning 

of digital trace data as a conceptualization of the events 

and mechanisms they record (Levina & Vaast, 2015). 

In response, computational social science has been 

advocated as a methodological advance (Chang, 

Kauffman, & Kwon, 2014; Lazer et al., 2009) but it 
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comes with a number of challenges. These include the 

difficulty of analyzing complex and messy social 

phenomena and the tendency of researchers to 

oversimplify (naturalize) these complex relationships, 

thereby curtailing the search for meaning (Törnberg & 

Törnberg, 2018). Scholars have thus been advised to 

complement and blend computational analyses of 

digital trace data with deep qualitative inquiry to 

account for and understand the context(s) in which 

those data are generated (Lindberg, 2020; Whelan, 

Teigland, Vaast, & Butler, 2016). In essence, scholars 

are advised to add context to digital trace data “from 

the outside” through manual data collection or 

analysis. We propose an alternative: rather than add 

context to the computational analysis of digital trace, 

we suggest incorporating it inside. 

3 Visualizing Record-Keeping 

Routines at a Dermatology Clinic 

using ThreadNet 

3.1 Brief Introduction to ThreadNet  

Because we aim to contribute to research practice, we 

wish to demonstrate the usefulness of bringing context 

inside process data for theorizing about the process. 

Toward that end, we introduce ThreadNet, a software 

tool for the analysis and interpretation of processes in 

context based on the idea of a narrative network 

(Pentland et al., 2017c). We developed ThreadNet 

iteratively and have presented a variety of prototypes 

to the community over the years (Pentland, Recker, & 

Kim, 2017b; Pentland, Recker, & Wyner, 2015, 2016). 

The original version of ThreadNet was developed in 

MatLab. With support from the National Science 

Foundation (NSF SES-1734237), we made ThreadNet 

available as an open source R package on GitHub 

(http://www.github.com/ThreadNet), together with 

source code, instructions, documentation and sample 

data (http://routines.broad.msu.edu/ThreadNet/).  

Much like other computational approaches (e.g., 

Gaskin, Berente, Lyytinen, & Yoo, 2014; Indulska, 

Hovorka, & Recker, 2012; Larsen & Monarchi, 2004), 

ThreadNet uses sequential, categorical data to allow 

analyses and visualizations of processual phenomena. 

Metaphorically, it weaves threads into fabric. The key 

feature relevant to this paper is that ThreadNet makes 

it particularly convenient to choose contextual 

dimensions to define events and visualize the resulting 

network.  

ThreadNet was developed to help make computational 

tools for the analysis of digital trace data accessible by 

qualitative researchers. This resulted in some 

straightforward design criteria. First, ThreadNet 

should have a graphical interface that can be used 

without any coding or programming. We sought to 

remove barriers to use and minimize the learning 

curve. Thus, we used Shiny R to create the user 

interface. Second, the emphasis of the tool should be 

on visualization, not statistics. ThreadNet contains a 

variety of simple visualizations for narrative networks. 

Third, ThreadNet should not duplicate functionality 

from other network or sequence analysis packages 

(e.g., UCINet or TraMineR). ThreadNet provides the 

capability to export narrative networks for use in other 

software.  

3.2 Research Setting: Record Keeping at 

a Dermatology Clinic 

The data used here stem from a larger research project 

investigating the antecedents of complexity in 

healthcare routines (NSF SES-1734237). The data 

were collected from the dermatology clinics at the 

University of Rochester Medical Center. Superficially, 

dermatology clinics would seem to be one of the 

simplest possible clinical settings. In interviews, 

clinical staff members describe the workflow as a 

fairly uniform series of steps: (1) check-in, (2) 

“rooming” (taking the patient to an examination room), 

(3) taking vital signs and history, (4) examining the 

patient, (5) administering treatment and/or writing 

prescriptions, and (6) check-out. However, the data 

extracted from the electronic medical record (EMR) 

system indicate that the process contains substantial 

variation and complexity. This setting provides a 

revelatory and representative exemplar of how 

processes can be analyzed on the basis of digital trace 

data—in our case EMR record-keeping logs. EMRs are 

a notorious source of digital trace data (Kunzman, 

2018; Lee et al., 2017): the traces EMRs provide are 

both rich and noisy, in turn underscoring how being 

able to recognize everything “in context” is critical to 

understanding what is going on. 

3.3 The Digital Trace Data  

The EMR audit trail is useful for this paper because it 

contains contextual dimensions that are typically not 

present in most digitized event logs available in 

standardized formats (van der Aalst, 2016). For 

example, in addition to the action and the timestamp 

(what and when), our EMR data contains the actor role 

(who) and the workstation they used (where). We 

interpret the workstations as indicating location, rather 

than technology, because the EMR user interface is the 

same for each user at all workstations. Therefore, each 

individual is always using the “same system,” but they 

are using it in different locations. We focus on the 

record-keeping process at one clinic on one day in 

February 2015. The dataset (available at 

http://routines.broad.msu.edu/ThreadNet/OneDayOne

Clinic.csv) includes 24 visits from that day. The data 

were completely de-identified and include no 

identifying information about patients or providers.  
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Table 2. The First Five Minutes of One Patient Visit 

tStamp VISIT WORKSTN_ID ACTION_CODE ROLE CLINIC 

2/2/15 8:53 1 BCAHHURDRM CHECKIN TIME Admin Tech A 

2/2/15 8:53 1 BCAHHURDRM MR_SNAPSHOT Admin Tech A 

2/2/15 8:53 1 BCAHHURDRM MR_REPORTS Admin Tech A 

2/2/15 8:53 1 BCAHHURDRM MR_SNAPSHOT Admin Tech A 

2/2/15 8:53 1 BCAHHURDRM MR_REPORTS Admin Tech A 

2/2/15 8:55 1 BCAHHURDRM MR_SNAPSHOT Admin Tech A 

2/2/15 8:55 1 BCAHHURDRM MR_REPORTS Admin Tech A 

2/2/15 8:56 1 BCAHHURDRM MR_SNAPSHOT Admin Tech A 

2/2/15 8:56 1 BCAHHURDRM MR_REPORTS Admin Tech A 

2/2/15 8:56 1 URDERMDT3 AC_VISIT_NAVIGATOR Nurse A 

2/2/15 8:56 1 URDERMDT3 MR_HISTORIES Nurse A 

2/2/15 8:56 1 URDERMDT3 MR_ENC_ENCOUNTER Nurse A 

2/2/15 8:56 1 URDERMDT3 MR_VN_VITALS Nurse A 

2/2/15 8:56 1 URDERMDT3 MR_REPORTS Nurse A 

2/2/15 8:56 1 URDERMDT3 FLOWSHEET Nurse A 

2/2/15 8:56 1 URDERMDT3 MR_VN_CHIEF_COMPLAINT Nurse A 

2/2/15 8:56 1 URDERMDT3 MR_REPORTS Nurse A 

2/2/15 8:56 1 URDERMDT3 MR_SNAPSHOT Nurse A 

2/2/15 8:56 1 URDERMDT3 MR_REPORTS Nurse A 

2/2/15 8:57 1 BCAHHURDRM MR_REPORTS Admin Tech A 

2/2/15 8:57 1 BCAHHURDRM MR_SNAPSHOT Admin Tech A 

2/2/15 8:58 1 URDERMXRM1 MR_REPORTS Nurse A 

2/2/15 8:58 1 URDERMXRM1 AC_VISIT_NAVIGATOR Nurse A 

2/2/15 8:58 1 URDERMXRM1 MR_ENC_ENCOUNTER Nurse A 

2/2/15 8:58 1 URDERMXRM1 MR_HISTORIES Nurse A 

2/2/15 8:58 1 URDERMXRM1 MR_REPORTS Nurse A 

2/2/15 8:58 1 URDERMXRM1 MR_VN_VITALS Nurse A 

2/2/15 8:58 1 URDERMXRM1 FLOWSHEET Nurse A 

2/2/15 8:58 1 URDERMDT4 MR_REPORTS Physician A 

2/2/15 8:58 1 URDERMXRM1 MR_VN_VITALS Nurse A 

2/2/15 8:58 1 URDERMXRM1 MR_HISTORIES Nurse A 

2/2/15 8:58 1 URDERMXRM1 MR_HISTORIES Nurse A 

... ... ... ... ... ... 
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Figure 2: Twenty-Five Visits to the Dermatology Clinic 

 

Table 2 shows the first five minutes of one visit to the 

clinic, as captured in the EMR audit trail. Each row 

corresponds to an event. Events are described by a 

timestamp, a visit ID, Workstation_ID, Action_code, 

role, and clinic. When patients arrive at the clinic, they 

check in with a receptionist whose formal role in the 

system is “Admin Tech.” The computer workstation at 

the reception desk is labeled “BCAHHURDRM.” To 

complete the check-in, the Admin Tech visits several 

screens in the EMR system (e.g., “MR_SNAPSHOT”). 

After the patient is checked in, a nurse obtains the 

patient history and enters vital signs and the chief 

complaint. Every patient visit begins with checking in 

at reception and ends with the printing of a visit 

summary at checkout. But during each visit, the 

situational and sequential context is constantly 

changing.  

Note how the structure of the data in Table 2 resembles 

the conceptual layout of Figure 1. The rows are events, 

and the columns contain a set of contextual 

dimensions. Some dimensions change quickly (e.g., 

ACTION_CODE), others change slowly (e.g., ROLE), 

some remain constant for a majority of events (e.g., 

CLINIC). An important conceptual move is to treat all 

of these dimensions on an equal footing, rather than 

privileging the role of the actor (as does much of the 

traditional organizational scholarship) or the label of 

the action (as is typical for process analysis and 

process mining), since there are many aspects of 

context that can be used to define categories of events.  

We shaded sections of Table 2 to show a typical pattern 

in the record-keeping work. In each set of shaded rows, 

a particular actor (e.g., Admin Tech) stands at a 

particular workstation (e.g., BCAHHURDRM) to 

perform a series of actions. Each actor may perform 

several actions or just one.  

The entire set of 24 patient visits can be visualized as 

a set of threads, as shown in Figure 2. Each dot 

 
2 The combination of contextual factors is implemented in R 

using the unite function from the tidyr package. This 

function combines columns in a data frame to create a new 

column from the values in the original columns.  

represents one event (one row from the Table 2) and 

each row represents the sequence of events in the 

patient visit in event time (Poole et al., 2017). The 

shading of each dot indicates the corresponding event. 

Visualizing the threads as straight lines clearly 

demonstrates that they vary in length and sequence—

no two threads look alike. However, this illustration 

does not reveal how contextual factors shape the 

overall pattern of action. To evaluate that, we use 

ThreadNet to visualize how the events within each 

thread are related.  

3.4 The ThreadNet Algorithm  

Conceptually, ThreadNet constructs narrative 

networks by making two passes through the data. In 

the first pass, it identifies the nodes. In the second pass, 

it traces and counts the edges between the nodes.  

1. Identify the nodes. To define the nodes that will be 

included in the network, ThreadNet combines a set of 

contextual dimensions selected by the user. Nodes are 

labeled by combining the values in the columns of the 

data.2 Only the unique combinations that occur in the 

data appear in the network.  

2. Trace the edges. ThreadNet follows each thread 

from one event to the next. Whenever the sequentially 

adjacent events within a thread are different, it adds an 

edge between that pair of events, from one event to the 

next.3 The strength of the tie between those events can 

be based on the frequency of each pair of events (i.e., 

how often that transition occurs in the data). The 

resulting network is a valued, directed graph that is 

unimodal (one kind of node) and unidimensional (one 

kind of edge). 

3 This functionality is implemented in R using the ngram 

package to count the 2-grams within the observed threads. 

This provides an edge list that can be used to construct the 

network, as well as the weight of each edge.  
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3.5 Incorporating Context Make the 

Network Easier to Interpret  

To demonstrate how context changes the analysis and 

understanding of process, we consider how 

incorporating context in different ways changes the 

apparent structure of the narrative network that 

describes the record-keeping process. To illustrate, 

Figure 3 shows how we used ThreadNet to display the 

same 25 visits with the nodes defined in four different 

ways: (1) role only, (2) action only, (3) action + role, 

(4) action + role + workstation. Figure 3 also displays 

some quantitative information about each row (the 

entropy of the data and the density of the graph), 

helping to explain the visualizations.  

The left-hand column of Figure 3 presents the 

frequency of categories within each contextual 

dimension (or combination of dimensions), rendered 

as pie charts. For example, the first row (Role only), 

shows that there are six roles and that the Resident was 

involved in 54.3% of the record keeping that day. By 

hovering over the pie chart with the mouse in 

ThreadNet, we would see that the Technician was the 

second-most active role, with 38.8%.. The right-hand 

column of Figure 3 presents the narrative network with 

the nodes defined by the contextual dimension shown 

in the left-hand column.4 It is worth considering the 

differences between these four visualizations in some 

detail. The first row shows the relationship between the 

six roles in the clinic (Resident, Technician, Admin 

Tech, Physician, Nurse, and Staff). As noted above, the 

network graph is an event network, not a social 

network, but it does provide an actor-centric 

perspective on the handoffs between the roles in the 

clinic (Pentland et al., 2017c). The graph is extremely 

dense (density = 0.78), which obscures any underlying 

processes (Pentland et al., 2017a). Each role in the 

clinic handed off record keeping to nearly every other 

role at least once during the day. We can see that all 

the roles are involved, but we cannot see what they are 

doing.  

The second row presents the same data with nodes 

defined by action this time (n = 48). This would be the 

typical way to define nodes in process mining and 

discovery (van der Aalst, 2011b). Because of the 

highly variable nature of the work, this graph looks like 

the classic “hairball” (Dianati, 2016). In principle, 

process mining tools could be used to refine and filter 

this representation (usually by frequency of 

occurrence) to get a “comprehensible” model, which is 

what most applications of process mining try to 

achieve (Breuker et al., 2016; van der Aalst, 2011a). 

Rather than attempting to simplify or reduce the data 

to reveal an idealized model, we embrace the 

complexity that is present in the data.  

To illustrate, instead of re-coding the data into more 

abstract categories, as proposed in traditional inductive 

qualitative analysis (Gioia et al., 2013; Urquhart, 

Lehmann, & Myers, 2010), we added more situational 

context. For the third row, we combined the actions 

and the roles to define the nodes in the network. This 

combination resulted in 98 unique action-role values, 

each of which became a node in the graph. 

Constructing the graph in this way began to reveal 

regions of activity associated with each clinical role. 

The two large clusters correspond to the Resident role 

and the Technician role. We added context in the 

events by including the role that performs each action. 

Adding context began to make the graph less dense 

(density = 0.083). The increase in “white space” 

(absence) began to reveal structure in the process. As 

work is carried out, some roles frequently have 

handoffs with others, while other roles carry out their 

work without frequent interactions with others.  

For example, the group of actions carried out by the 

Physician (sparse set of orange nodes in the upper left) 

are mainly connected to actions carried out by the 

Resident (the relatively dense set of green nodes in the 

upper right). The group of actions carried out by the 

Technician is also relatively dense, but separated from 

the Physician. Physicians have frequent handoffs with 

Residents but less frequent handoffs with Technicians. 

For all of these roles, the most frequent handoff occurs 

via “MR_REPORTS,” which is a kind of landing 

screen in the EPIC user interface (as reflected by its 

frequent occurrence in Table 2).  

In the fourth row, we added more situational context 

by adding “workstation” to the definition of the nodes. 

This combination resulted in 458 unique values for 

action-role-workstation events. By constructing the 

graph with these 458 nodes, the sociomaterial structure 

of the work process became more clearly visible. The 

clusters in the graph correspond to activity at the 

workstations around the clinic. The influence of the 

material technology (specific workstations) is clearly 

visible in the patterns of action because the clusters in 

the network correspond to workstations. The visibility 

increased because adding context contributed both 

presence (the clusters of action-role-workstation that 

do occur) and absence (combinations of action-role-

workstation that never occur). By adding context, we 

added both information and white space to the graph, 

which helps reveal what Hernes (2007, p. 1) calls the 

“tangled world.” 

 
4 Note that colors are assigned independently in the right-

hand vs. left-hand column. 
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Figure 3: Contextualizing an Event in Four Different Ways Changes the Apparent Structure of the Process  

 

3.6 Entanglement and Disentanglement 

Through Context  

Based on this example, we can begin to generalize 

about the ways that contextual dimensions can 

influence the visualization. Not all contextual 

dimensions are equally informative. If a dimension 

never changes, or if it covaries with other dimensions, 

it does not add information. Conceptually, adding 

more dimensions of context is only valuable if they add 

information (Kim et al., 2019) because context only 

matters when it changes. For example, if we added a 

dimension for Continent, it would have the same value 

for all visits to all clinics at the University Rochester 

Medical Center.  

By contrast, some contextual dimensions may have 

multiple values, but the observed threads never cross 

between them. In other words, those dimensions are 

not visibly entangled by the process. ThreadNet can 

help reveal such a situation in the dermatology audit 

trail data quite easily if the view of the process was 

expanded to include clinic as a contextual dimension. 

To illustrate, consider nodes in the graph defined with 

three dimensions: action-role-clinic. So, when a nurse 

performed an action in one clinic, we treated that as a 

different event than a nurse performing the same action 

in a different clinic. The University of Rochester 

Medical Center operates multiple dermatology clinics, 

each of which is located at a distinct physical site. 

Visits to one clinic do not usually extend to the other 

clinics. Figure 4(a) shows one full day at two clinics 

(51 visits) and Figure 4(b) includes three clinics (76 

visits). Comparing both network graphs it becomes 

immediately apparent where context became entangled 

with the process and where it did not—two of the 

clinics had a single interaction that day, the third clinic 

was completely disconnected.  

Hence, including the situational context clinic in the 

definition of the nodes, disentangles the graph because 

patient visits tend to be localized to particular clinical 

sites—the threads rarely cross these contextual 

boundaries. If the analysis shows that they do, it allows 

for “constructing mystery” in theorizing (Alvesson & 

Kärreman, 2007): i.e., the graph clearly shows the path 

and it reveals what happened during these exceptions. 

Spotting such deviant cases through traditional 

qualitative fieldwork involves complex 

methodological and analytical work (Mertens et al., 

2016). With our approach, it can be quickly computed. 

In a tangled world, however, threads do cross 

organizational boundaries (Avgerou, 2019; Winter et 

al., 2014). For example, in-patient medical care may 

involve multiple clinical specializations, specialized 

labs, specialized treatment facilities, and so on. These 

seemingly distinct units become entangled in practice. 

When this happens, intuitions about the resulting 

processual phenomena are weak at best. Digital data 

sources that trace such processes typically span 

multiple systems and technologies, making it even 

more difficult to identify and reason about the events 

that unfold. But beyond the technological difficulties 

associated with constructing digital trace datasets 

(Bala et al., 2018), it is also necessary to explore 

different conceptualizations of “what happened” to 

theorize about the process. Our conceptualization of 

context within an event allows for this conceptual 

latitude (Burton-Jones, McLean, & Monod, 2015) 

because it enables constructing views on the process 

constituted by different conceptualizations of 

“context” to find structure and meaning in the graph 

that informs theorizing about what is going on. 
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(a) Two clinics 

 

(b) Three clinics 

 

Figure 4: Context Disentangles the Graph 
 

4 Discussion and Implications 

Context is clearly important to understanding and 

analyzing processes but it has been difficult to put this 

idea into practice. Context is typically conceptualized 

and operationalized as something that exists outside of 

processes (Rosemann et al., 2008); moreover, context 

is generally seen as static and atemporal (Pettigrew, 

2012). When context is conceptualized as something 

“out there,” in the background, one might investigate 

the role of context in process by asking if the workflow 

is different in one clinic versus another (Avgerou, 

2019; van der Aalst & Dustdar, 2012) or if it changes 

by season, for example (Rosemann et al., 2008). But 

when context is conceptualized as constitutive of the 

events within a process, as we have done here, it 

invokes an entirely different scholarly journey. The 

visualizations in Figures 3 and 4 embody a novel way 

to incorporate context in the description of processual 

phenomena. Putting context inside the 

conceptualization mixes the “in-here” and the “out-

there” (Hernes, 2007, p. 2). Adding contextual 

dimensions into the definition of events in a process 

changes how a process looks both through the presence 

and absence of new information. ThreadNet provides a 

convenient way for researchers to incorporate and 

visualize the influence of context on the structure of a 

process. It allows researchers to bring deep qualitative 

inquiry of the context of digital trace data (Lindberg, 

2020; Whelan et al., 2016) directly into the 

computational analysis rather than adding it as a 

complement. In the following sections, we discuss the 

implications of this innovation. 

4.1 Comparison to Other Approaches to 

Processual Analysis  

We begin by explaining how our approach and 

implementation in ThreadNet is different from typical 

ways for analyzing process data. We sampled a range 

of leading analysis tools potentially suitable for 

process scholarship that are based on different 

underlying conceptual frameworks (specifically, 

NVivo, ATLAS.ti, TraMineR, ProM and BupaR). Our 

comparison is by no means comprehensive. For 

example, we excluded an enormous set of other 

sequence analysis tools, many of which are specific to 

bioinformatics or content analysis but can be adapted 

to organizational research (see, e.g., Gaskin et al., 

2014). Likewise, we excluded several approaches to 

social network analysis (Borgatti, Everett, & Johnson, 

2013) even though they too can, at least to some extent, 

be used to implement similar ideas (e.g., events as 

nodes in semantic networks). Instead, we sampled the 

two most prominent types of tools used for process 

scholarship—those traditionally used in qualitative 

data analysis (Flick, 2018, pp. 519-536), such as 

NVivo or ATLAS.ti, and those typically used in digital 

trace data analysis (Gabadinho et al., 2011; van der 

Aalst, 2016). We inspected the capacity of both the 

conceptual frameworks and the concrete features of the 

chosen tools to allow for our conceptualization of 

processes as sequences of contextualized events in a 

narrative network. Table 3 summarizes our insights.  

Open coding. Open coding offers great flexibility but 

it is also labor intensive and thus not well suited to 

handling digital trace data (Indulska et al., 2012). Most 

qualitative analysis is based on the coding of text or 

some other kind of document. Tools like NVivo, for 

example, allow for the creation of “nodes” and “node 

hierarchies.” These can be used to code contextual 

categories and could be used to code sequential 

categories as well. However, working directly with 

text, even with a tool like NVivo, would make it 

difficult to keep track of hundreds of categories and 

their sequential relationships in a large corpus of data. 

Also, since ethnographic field notes and interviews are 

often focused on the “ethnographic present” (Sanjek, 

1991), time or sequence are often not present in the 

original data sources. In contrast, ThreadNet traces all 
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of the sequential relations between every unique 

combination of contextual categories.  

State-sequence analysis. Career progressions provide 

the archetypal example of a state-sequence analysis in 

social science research (Abbott & Hrycak, 1990). The 

state-sequence framework is instantiated in TraMineR 

(Gabadinho et al., 2011) along with a broad array of 

sophisticated sequence analysis tools. TraMineR has 

mainly been applied in sociological research on life 

course progression, although the methods are 

applicable to a broad range of problems (Poole et al., 

2017). States are defined by a single attribute (e.g., 

married or unmarried). Each row represents a case 

(e.g., a career) and each state occupies one column, so 

here is no way of showing multiple states (attributes) 

at the same time. In contrast, ThreadNet can handle 

events defined by any combination of attributes and it 

allows users to change the combination at will.  

Process mining. We use the term “process mining” to 

refer to a large, diverse, and evolving set of tools and 

ideas (van der Aalst, 2016). Our focus here 

corresponds largely to what is considered “classical” 

process mining. The ProM framework (van Dongen, et 

al., 2005) is a platform where researchers can publish 

new tools and techniques in the form of software plug-

ins. Outside of ProM, BupaR (Janssenswillen & 

Depaire, 2017) is an R package that implements basic 

process mining capabilities.  

In many but not all applications of process mining and 

modeling, the goal is to find a clean model that 

provides a reference for the execution of a process. 

Most process mining algorithms assume that the 

underlying process is stable, such that the discovery of 

the stable process and conformance checking are the 

primary applications (van der Aalst, 2005, 2011b). To 

that end, a typical goal of visualization has been to 

simplify overly cluttered graphs into comprehensible 

models (Breuker et al., 2016; van der Aalst, 2011a). In 

contrast, our explicit goal is to reveal the extent of the 

mess and to display processes as they unfold in event 

time.  

Our approach. In contrast to these other frameworks 

for processual analysis, the narrative network on which 

ThreadNet is based provides a way to embrace and 

internalize context. It can handle a fluid notion of 

events constituted by changing context. This is 

important because, even in a repetitive process or 

routine, there is no a priori reason to expect that events 

will repeat in an exact pattern. Especially on longer 

time scales, it is reasonable to expect on-going change 

(Pentland et al., 2012).  

As shown in our illustration of the EMR record-

keeping trace data, our approach is capable of 

revealing the structure and paths of the clinical routine 

that would be invisible using any of the alternative 

frameworks in Table 3.  

 

Table 3: Alternative Frameworks for Processual Analysis 

Conceptual 

framework 

Open  

coding 

State 

sequences 

Process  

mining 

Narrative 

networks 

Example 

software 

NVivo 

ATLAS.ti 

TraMineR ProM 

BupaR 

ThreadNet 

Input data 

structure 

Text, field 

notes, images, 

etc. 

One sequence 

per row, one 

state per 

column 

.XES (XML 

document with 

specialized 

structure for 

timestamped 

events) 

.CSV with one 

time-stamped 

event per row 

and contextual 

attributes in 

columns 

How is context 

represented? 

In text and 

diagrams 

No 

incorporation of 

context: states 

are defined by 

single-value 

codes 

Limited 

incorporation of 

context: actions 

may be 

associated with 

a resource or 

other attributes 

such as location 

Any number of 

contextual 

dimensions can 

be included as 

coded 

categories 

How are events 

and states 

represented? 

In text and 

diagrams 

Events are 

implicit in 

sequence of 

states 

Events and 

states explicitly 

modeled in 

Petri Net 

Events are 

nodes. States 

are implicit in 

sequence of 

events 
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For example, open coding would potentially lead to a 

rich description of certain observed occurrences or the 

surfacing of particular salient patterns or classifications, 

but it does not provide an effective method for looking 

at the patterns that emerge from 458 unique 

combinations of role, actor, and workstation. Process 

mining and state-sequence analysis do not provide 

complex representations that, as shown above, can help 

disentangle and explain what is really going on. They 

typically either abstract away such complexity by design 

or only reveal the “hairball” that emerges from the work 

on a surface level. 

4.2 Implications 

Using the contextual information that is potentially 

available in digital trace data to relax assumptions about 

what constitutes the context of events in processes has 

interesting implications for process scholarship.  

4.2.1 Abstraction and Richness of Processual 

Data 

The conventional wisdom is that large numbers of first-

order categories need to be reduced into a smaller 

number of higher-order categories (Berente et al., 2019; 

Gioia et al., 2013). We suggest taking the opposite 

approach: include as much detail as possible. As more 

context informs the definition of events, the number of 

categories of events increases, with each event category 

becoming one node in the narrative network. Yet the 

total number of event categories that actually occurs in 

the data—the actualized combinations—remains 

relatively small. In the data we use here, 458 actualized 

event nodes exist, making up about 7.2% of the 

combinations that could occur. If every role performed 

every action at every workstation, there would be 6 roles 

x 48 actions x 22 workstations = 6336 combinations. If 

we analyzed a larger sample, that fraction would 

undoubtedly rise, but overall it would remain relatively 

low because the world is full of structure and 

specialization: not everyone uses every tool to do every 

task in every location. In other words, more categories 

do not simply clutter the graph, they present meaningful 

new information while also adding clarifying absence 

into the visualization. Including more contextual 

dimensions in the definition of events initiates a novel 

and interesting visualization of that structure, which aids 

inductive theorizing.  

This approach is a dramatic departure from standard 

research practice. Most analyses strive to keep the 

number of codes (categories) to a minimum. Tools like 

 
5 ThreadNet computes the entropy values shown in Figure 3 

using the standard Shannon formula: -∑𝑝 log 𝑝, where p is 

the probability of each category in the data. This is the 

entropy of the data as shown in the pie charts, which shows 

the relative frequency of each category in the pie. It does not 

include any information about sequence. 

NVivo or ATLAS.ti can be used for any number of first-

order constructs, but their key feature is to make it easy 

to reduce the number of second-order constructs (Gioia 

et al., 2013) in order to speed up data analysis (Flick, 

2018, p. 520). Second-order constructs assist theoretical 

abstraction and scaling (Urquhart et al., 2010) but they 

also reduce the richness of the description by reducing 

entropy. Fewer codes are more manageable and easier 

to write about (Myers, 2009). The same approach is seen 

in process mining as well. In process mining, less 

frequent paths are often simply filtered out to make a 

cleaner-looking process model (van der Aalst, 2009) 

that is easier to comprehend (Breuker et al., 2016). In 

terms of Weick’s (1969) trade-off between simplicity, 

accuracy, and generality, a small number of abstract 

categories favors simplicity and generality at the 

expense of accuracy.  

4.2.2 Entropy, Density, and Absence as 

Context 

While our contribution is primarily of qualitative value, 

it rests on quantitative properties: adding more 

contextual dimensions produces more categories and the 

entropy of the data increases.5 Entropy is a measure of 

information content; thus, more entropy means more 

information. Proceeding from a lexicon of 48 unique 

actions to a lexicon of 458 unique action-role-

workstation combinations, as shown in Figure 3, 

produces much more information. Whether or not one 

calls these visualizations “richer,” they are definitely 

more informative.  

At the same time, the density of the network drops 

dramatically because a rather small increase in the 

number of edges (sequential relations between the 

nodes) is spread out over a much larger set of possible 

nodes. 6  Visually, the sequential relationships that 

occurred in the data are revealed because they stand out 

more clearly against the background of the relationships 

that do not occur. In other words, the blank space 

improves the visibility of the shapes. And in a world 

with social and technical divisions of labor, where some 

actors use some tools to do some tasks, there is a lot of 

blank space. Most combinations never occur, just as 

most affordances are never actualized (Strong et al., 

2014). By incorporating more contextual information in 

the description of the process, not only is the apparent 

structure changed, the visualization is improved as well. 

This effect is demonstrated vividly by the images in 

Figure 3.  

6 ThreadNet computes density using the standard formula for 

a directed graph: edges/nodes2.  
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The effect described here is the result of including 

sequential context in our analysis. Sequential context is 

an essential aspect of all processual phenomena (what 

happened before? What will happen next?). When 

sequential relations between events in a narrative 

network are captured, it creates an exponential canvas of 

possibilities. To build on a visual metaphor, a canvas has 

n2 pixels, where n is the number of possible events used 

to describe the process. Thus, the white space (the 

absence) grows exponentially faster than the observed 

events (the presence).  

Absence as context is a powerful idea. The things that 

never occur provide a background for interpreting the 

things that do. The absent and the invisible are key 

issues entangled with processual phenomena, especially 

when safety or any kind of undesirable outcome is at 

risk. For example, in the context of medical procedures 

or flight operations (Gawande, 2009), the work process 

may include checklists or other actions that are intended 

to prevent bad things from happening (e.g., infections, 

crashes). These elements can only be understood in light 

of what does not happen. Checklists may seem like a 

waste of time because the value they add appears in what 

does not happen. Why does a medical team pause in the 

operating team before proceeding? Why does a doctor 

write on the patient’s left elbow before going in to 

operate? The value added depends on what is prevented 

(the absence).  

5 Future Research Directions 

The approach we outline here has the potential to 

generate new research directions on the basis of digital 

trace data and contextual process analysis. It emphasizes 

processes as units of analysis (rather than objects or 

actors) and also provides a formal way to represent 

process as a narrative network, as suggested by Pentland 

and Feldman (2007). Because more and richer digital 

traces are becoming available, the network approach is 

not only more feasible but we demonstrated how such a 

network can include more context as well.  

5.1 The Role of Context in Process 

Dynamics  

Our approach provides a foundation for process 

dynamics as network dynamics (Goh & Pentland, 

2019). By dynamics, we mean changes to the structure 

of a process over time. Digitized processes are a prime 

candidate for exploring such questions (Pentland et al., 

2020). This approach is also useful for diachronic (or 

longitudinal) comparison (Barley, 1990; Berente et al., 

2019). In diachronic analysis, the interest is in change 

over time: What is the trajectory of the process? What 

keeps it on track? What causes it to change? The first 

step in answering these questions is to represent the 

process within the context in which it unfolds.  

Diachronic analysis further sets the stage for inquiry into 

why processes take the form they do. Beyond describing 

and modeling processes, one can begin to explain and 

predict how processes form and change over time. These 

are central themes in research on routine dynamics 

(Feldman et al., 2016). What is presented here is purely 

descriptive: one day at one clinic. Echoing Gregor 

(2006), this presents the opportunity (and challenge) to 

now move from Level 1 (description) to higher levels 

(explanation and prediction). 

5.2 Processual Perspective on 

Heterogeneous Ensembles  

Because we allow for varied definitions of context, our 

approach generalizes easily to nonhuman actors. While 

traditional behavioral science assumes that actors are 

human, recent theories of sociomateriality point toward 

the increasing importance of technology in the 

constitution and emergence of agency (D’Adderio, 

2008, 2011; Faulkner & Runde, 2009; Leonardi, 2011). 

With digital technology becoming increasingly 

malleable, performative, and editable (Ekbia, 2009; 

Kallinikos, Aaltonen, & Marton, 2013; Yoo, 

Henfridsson, & Lyytinen, 2010), agency in routines is 

becoming less predefined, more distributed and no 

longer solely human-centric (Beane & Orlikowski, 

2015; Leonardi, 2011; Orlikowski, 2007). As more 

situational context is allowed to enter the definition of 

an event (e.g., actor and artifact), social and material 

agents are placed on equal footing: traditional categories 

are “de-centered” because everything is treated equally. 

Actors, artifacts, actions are all just aspects of context. 

As artificial intelligence increasingly plays a role in 

organizational and private processes and routines, our 

approach allows for visualizing and analyzing how 

social and material agents interact. 

5.3 Process Theorizing with Contextual 

Digital Trace Data  

The application of narrative networks with context is 

dependent on the availability, richness, and quality of 

digital trace data and the ability to collect and encode 

sequential trace data that contain meaningful contextual 

categories. At present, several issues remain that 

condition the possible use of our approach and require 

further research and development:  

1. Granularity. Granularity is always an issue in 

processual analysis (Poole et al., 2017). The idea of 

incorporating situational and sequential context into 

process analysis benefits from data that include multiple 

levels of temporal granularity, as some contextual 

dimensions can change at different rates. To gain 

meaningful insights, at least some contextual 

dimensions must be captured at the time scale of the 

phenomena being investigated or even more quickly.  
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2. Observability. Observability is another fundamental 

concern (Poole et al., 2017). Only observable aspects of 

context can be included. For example, if one wanted to 

include what people were thinking as a contextual factor, 

these data would need to be captured somehow. Systems 

that record event logs, by contrast, have the ability to 

record context data independent of pace of change; 

however, most process-aware information systems tend 

to record only a limited amount of observable context. 

3. Sequential coherence. This framework requires data 

that have a coherent, narrative structure. To create 

meaningful narrative networks, one must start from 

meaningful narratives—sequences of events that are 

related. For example, in our EMR data, events are related 

because they are all part of a patient visit.  

4. Data quantity. In principle, our approach does not 

require large amounts of data. For example, the 

methodology outlined by Pentland and Liu (2017) 

assumes that data are collected through structured 

interviews. However, digital trace data make it possible 

to compare processes across time and space in ways that 

would be difficult with interviews or observations. Still, 

processes unfold across technological and organizational 

containers, which makes it difficult to trace events at the 

same level of observability and granularity and may 

potentially require imputing the sequential coherence of 

events (Bala et al., 2018; Bayomie et al., 2019) 

5. Pre-coding is required. To incorporate context into 

processual analysis requires that contextual categories 

are coded. This is the hard work that qualitative 

researchers perform using tools like NVivo and 

ATLAS.ti. For example, a corpus of email messages, in 

which the main body of the data is uncoded text, cannot 

be directly analyzed. The messages would need to be 

coded. In many kinds of digital trace data (like the EMR 

data reported here), some categorization (e.g., into 

actions, actors, or location) is available but data quality 

and coding remains an important precondition (Bose, 

Mans, & van der Aalst, 2013). 

6. Limits of dimensionality. While adding contextual 

dimensions can be helpful, dimensions cannot 

indefinitely be added. As Bellman (1957) pointed out, as 

the dimensionality of a feature space increases, the 

number of configurations grows exponentially. For the 

reasons explained above, this can assist in visualizing 

processes as narrative networks. At the same time, we 

must be mindful of the corollary challenge: the number 

of configurations covered by a given set of observations 

can decrease. Thus, we may be seeing only a fraction of 

possible process patterns. Fortunately, using 3-4 

dimensions to represent a process is safely within normal 

human experience.  

6 Conclusion 

Bringing context into the description of processual 

phenomena involves a reorientation of our methods and 

our thinking that goes beyond switching figure and 

ground to putting actions in the foreground and actors in 

the background. It allows reexamining what counts as 

figure and ground in order to analyze and ultimately 

theorize about processual phenomena in different ways 

using digital trace data.  

Our contribution is primarily conceptual, rather than 

computational, but our working software ThreadNet 

provides the tool support necessary to make the concepts 

useful in practice. Traditionally, with a moderate corpus 

of field notes, it is feasible to code the data and construct 

networks by hand. But as shown here, restricting 

analysis to a modest number of categories (regardless of 

how they are defined) tends to suppress the richness of 

how processual phenomena are seen and interpreted.  

Bringing context inside provides a new approach—not 

for proposing answers, but for asking new and different 

questions, an ability that will gain prominence as more 

and more digital trace data becomes available for study.7 

And since calls for computational methods for 

theorizing are increasing (Berente et al., 2019; Lindberg, 

2020), a strong conceptual focus on context and its role 

in process theorizing allows a shift in focus away from 

“What explains the process?” (van de Ven & Poole, 

1995) to more nuanced questions centered around “How 

does it change, and why?,” “How is it different?,” and 

other inquiries of comparison, dynamics, and 

emergence in a digital world. 

Acknowledgments   

We are thankful to the senior editor, Patrick Finnegan, 

and two anonymous reviewers for helpful feedback on 

this paper. This material is based upon work supported 

by the National Science Foundation under Grant No. 

SES-1734237. Any opinions, findings, conclusions, or 

recommendations expressed in this material are those of 

the author(s) and do not necessarily reflect the views of 

the National Science Foundation. This research was also 

supported in part by University of Rochester CTSA 

(UL1 TR002001) from the National Center for 

Advancing Translational Sciences (NCATS) of the 

National Institutes of Health (NIH). The content is 

solely the responsibility of the authors and does not 

necessarily represent the official views of the National 

Institutes of Health. All faults remain ours. 

 
7 For example, we are aware that Pachilova and Sailer (2019) 

use our approach in conjunction with digital trace data from 

logged activities and locations and digital hospital layout 

plans to study how spatial layout designs influence the way 

staff members and patients interact in hospital routines. 



Bringing Context Inside Process Research 

 

1231 

References 

Abbott, A. (1990). A primer on sequence methods. 

Organization Science, 1(4), 375-392.  

Abbott, A. (1995). Sequence analysis: New methods 

for old ideas. Annual Review of Sociology, 

21(1), 93-113.  

Abbott, A. (2016). Processual sociology. University of 

Chicago Press. 

Abbott, A., & Hrycak, A. (1990). Measuring 

resemblance in sequence data: An optimal 

matching analysis of musicians’ careers 

American Journal of Sociology, 96(1), 144-185.  

Alaimo, C., & Kallinikos, J. (2017). Computing the 

everyday: Social media as data platforms. The 

Information Society, 33(4), 175-191.  

Alvesson, M., & Kärreman, D. (2007). Constructing 

mystery: Empirical matters in theory 

development. Academy of Management Review, 

32(4), 1265-1281.  

Austin, J. L. (1962). How to do things with words. 

Harvard University Press. 

Avgerou, C. (2019). Contextual explanation: 

Alternative approaches and persistent 

challenges. MIS Quarterly, 43(3), 977-1006.  

Bala, S., Mendling, J., Schimak, M., & Queteschiner, 

P. (2018). Case and activity identification for 

mining process models from middleware. In R. 

A. Buchmann, D. Karagiannis & M. Kirikova 

(Eds.), Poem 2018: The practice of enterprise 

modeling (pp. 86-102). Springer. 

Barley, S. R. (1990). Images of imaging: Notes on 

doing longitudinal field work. Organization 

Science, 1(3), 220-247.  

Barnes, B., & Law, J. (1976). Whatever should be done 

with indexical expressions? Theory and Society, 

3(2), 223-237.  

Baskerville, R., Myers, M. D., & Yoo, Y. (2020). 

Digital first: The ontological reversal and new 

challenges for is research. MIS Quarterly, 44(2), 

509-523.  

Bayomie, D., Di Ciccio, C., la Rosa, M., & Mendling, 

J. (2019). A probabilistic approach to event-

case correlation for process mining. In A. H. F. 

Laender, B. Pernici, E.-P. Lim & J. P. M. de 

Oliveira (Eds.), Conceptual modeling: Er2019 

(pp. 136-152). Springer. 

Beane, M., & Orlikowski, W. J. (2015). What 

difference does a robot make? The material 

enactment of distributed coordination 

Organization Science, 26(6), 1553-1573.  

Bellman, R. (1957). Dynamic programming. Princeton 

University Press. 

Berente, N., Seidel, S., & Safadi, H. (2019). Data-

driven computationally intensive theory 

development. Information Systems Research, 

30(1), 50-64.  

Borgatti, S. P., Everett, M. G., & Johnson, J. C. (2013). 

Analyzing social networks. SAGE. 

Bose, R. P. J. C., Mans, R. S., & van der Aalst, W. M. 

P. (2013). Wanna improve process mining 

results? Paper presented at the IEEE 

Symposium on Computational Intelligence and 

Data Mining.  

Bose, R. P. J. C., & van der Aalst, W. M. P. (2009). 

Context aware trace clustering: Towards 

improving process mining results. Paper 

presented at the SIAM International 

Conference on Data Mining.  

Breuker, D., Matzner, M., Delfmann, P., & Becker, J. 

(2016). Comprehensible predictive models for 

business processes. MIS Quarterly, 40(4), 

1009-1034.  

Burke, K. (1962). A grammar of motives, and a 

rhetoric of motives. World.  

Burton-Jones, A., McLean, E. R., & Monod, E. (2015). 

Theoretical perspectives in is research: From 

variance and process to conceptual latitude and 

conceptual fit. European Journal of 

Information Systems, 24(6), 664-679.  

Burton-Jones, A., & Volkoff, O. (2017). How can we 

develop contextualized theories of effective use? 

A demonstration in the context of community-

care electronic health records. Information 

Systems Research, 28(3), 468-489.  

Chang, R. M., Kauffman, R. J., & Kwon, Y. (2014). 

Understanding the paradigm shift to 

computational social science in the presence of 

big data. Decision Support Systems, 63, 67-80.  

Charmaz, K. C. (2006). Constructing grounded theory: 

A practical guide through qualitative analysis.  

SAGE. 

Ciborra, C. (2000). From control to drift: The 

dynamics of corporate information 

infrastructures. Oxford University Press. 

D'Adderio, L. (2008). The performativity of routines: 

Theorising the influence of artifacts and 

distributed agencies on routine dynamics. 

Research Policy, 37(5), 769-789.  

D’Adderio, L. (2011). Artifacts at the centre of 

routines: Performing the material turn in 

routines theory. Journal of Institutional 

Economics, 7(2), 197-230.  



Journal of the Association for Information Systems  

 

1232 

de Saussure, F. (1974). Course in general linguistics. 

Peter Owen. 

De Weerdt, J., van den Broucke, S., Vanthienen, J., & 

Baesens, B. (2013). Active trace clustering for 

improved process discovery. IEEE 

Transactions on Knowledge and Data 

Engineering, 25(12), 2708-2720.  

Derrida, J. (1981). Positions. Athlone. 

Dhar, V. (2013). Data science and prediction. 

Communications of the ACM, 56(12), 64-73.  

Dianati, N. (2016). Unwinding the hairball graph: 

Pruning algorithms for weighted complex 

networks. Physical Review E, 93(1), Article 

012304.  

Eco, U. (1976). A theory of semiotics. The Macmillan 

Press. 

Ekbia, H. R. (2009). Digital artifacts as quasi-objects: 

Qualification, mediation, and materiality. 

Journal of the American Society for 

Information Science and Technology, 60(12), 

2554-2566.  

Emirbayer, M. (1997). Manifesto for a relational 

sociology. American Journal of Sociology, 

103(2), 281-317.  

Faulkner, P., & Runde, J. (2009). On the identity of 

technological objects and user innovations in 

function. Academy of Management Review, 

34(3), 442-462.  

Feldman, M. S. (1995). Strategies for interpreting 

qualitative data (Vol. 13). SAGE. 

Feldman, M. S., & Pentland, B. T. (2003). 

Reconceptualizing organizational routines as a 

source of flexibility and change. Administrative 

Science Quarterly, 48(1), 94-118.  

Feldman, M. S., Pentland, B. T., D’Adderio, L., & 

Lazaric, N. (2016). Beyond routines as things: 

Introduction to the special issue on routine 

dynamics. Organization Science, 27(3), 505-

513.  

Flick, U. (2018). An introduction to qualitative 

research (6th ed.). SAGE. 

Floridi, L. (2012). The road to the philosophy of 

information. In H. Demir (Ed.), Luciano 

Floridi’s philosophy of technology (pp. 245-

271). Springer. 

Freelon, D. (2014). On the interpretation of digital 

trace data in communication and social 

computing research. Journal of Broadcasting & 

Electronic Media, 58(1), 59-75.  

Gabadinho, A., Ritschard, G., Müller, N. S., & Studer, 

M. (2011). Analyzing and visualizing state 

sequences in r with traminer. Journal of 

Statistical Software, 40(4), 1-37.  

Gaskin, J., Berente, N., Lyytinen, K., & Yoo, Y. (2014). 

Toward generalizable sociomaterial inquiry: A 

computational approach for zooming in and out 

of sociomaterial routines. MIS Quarterly, 38(3), 

849-871.  

Gawande, A. (2009). The checklist manifesto: How to 

get things right. Metropolitan. 

George, G., Osinga, E. C., Lavie, D., & Scott, B. A. 

(2016). Big data and data science methods for 

management research. Academy of 

Management Journal, 59(5), 1493-1507.  

Gioia, D. A., Corley, K. G., & Hamilton, A. L. (2013). 

Seeking qualitative rigor in inductive research. 

Organizational Research Methods, 16(1), 15-

31.  

Goffman, E. (1974). Frame analysis: An essay on the 

organization of experience. Harper and Row. 

Goh, J. M., Gao, G., & Agarwal, R. (2011). Evolving 

work routines: The adaptive routinization of 

technology in healthcare. Information Systems 

Research, 22(3), 565-585.  

Goh, K. T., & Pentland, B. T. (2019). From actions to 

paths to patterning: Toward a dynamic theory 

of patterning in routines. Academy of 

Management Journal, 62(6), 1901-1929.  

Gregor, S. (2006). The nature of theory in information 

systems. MIS Quarterly, 30(3), 611-642.  

Heritage, J. (2013). Garfinkel and ethnomethodology.  

Wiley. 

Hernes, T. (2007). Understanding organization as 

process: Theory for a tangled world (Vol. 2). 

Routledge. 

Hernes, T. (2017). Process as the becoming of 

temporal trajectory. In A. Langley & H. 

Tsoukas (Eds.), The SAGE handbook of process 

organization studies (pp. 601-606). SAGE. 

Hong, W., Chan, F. K. Y., Thong, J. Y. L., Chasalow, 

L. C., & Dhillon, G. (2014). A framework and 

guidelines for context-specific theorizing in 

information systems research. Information 

Systems Research, 25(1), 111-136.  

Indulska, M., Hovorka, D. S., & Recker, J. (2012). 

Quantitative approaches to content analysis: 

Identifying conceptual drift across publication 

outlets. European Journal of Information 

Systems, 21(1), 49-69.  

Janssenswillen, G., & Depaire, B. (2017). Bupar: 

Business process analysis in r. Paper presented 



Bringing Context Inside Process Research 

 

1233 

at the 15th International Conference on 

Business Process Management.  

Johns, G. (2006). The essential impact of context on 

organizational behavior. Academy of 

Management Review, 31(2), 386-408.  

Kallinikos, J., Aaltonen, A., & Marton, A. (2013). The 

ambivalent ontology of digital artifacts. MIS 

Quarterly, 37(2), 357-370.  

Kim, I., Pentland, B. T., Ryan Wolf, J., Xie, Y., Frank, 

K., & Pentland, A. (2019). Effect of attribute 

alignment on action sequence variability: 

Evidence from electronic medical records. In T. 

Hildebrandt, B. F. van Dongen, M. Röglinger & 

J. Mendling (Eds.), Business process 

management forum: Bpm forum 2019 (pp. 183-

194). Springer. 

Kling, R., & Scacchi, W. (1982). The web of 

computing: Computer technology as social 

organization. In Marshall C. Yovits, Advances 

in Computers (Vol. 21, pp. 1-90). Academic. 

Kunzman, K. (2018). Why are EMRS so terrible? HCP 

Live, https://www.hcplive.com/view/why-are-

emrs-so-terrible.  

Larsen, K. R. T., & Monarchi, D. E. (2004). A 

mathematical approach to categorization and 

labeling of qualitative data: The latent semantic 

categorization method. Sociological 

Methodology, 34(1), 349-392.  

Lazer, D., Pentland, A. P., Adamic, L. A., Aral, S., 

Barabási, A.-L., Brewer, D., . . . van Alstyne, M. 

(2009). Computational social science. Science, 

323(5915), 721-723.  

Lee, C., Luo, Z., Ngiam, K. Y., Zhang, M., Zheng, K., 

Chen, G., . . . Yip, W. L. J. (2017). Big 

healthcare data analytics: Challenges and 

applications In S. U. Khan, A. Y. Zomaya, & A. 

Abbas (Eds.), Handbook of large-scale 

distributed computing in smart healthcare (pp. 

11-41): Springer. 

Leonardi, P. M. (2011). When flexible routines meet 

flexible technologies: Affordance, constraint, 

and the imbrication of human and material 

agencies. MIS Quarterly, 35(1), 147-167.  

Levina, N., & Vaast, E. (2015). Leveraging archival 

data from online communities for grounded 

process theorizing. In K. D. Elsbach & R. M. 

Kramer (Eds.), Handbook of qualitative 

organizational research: Innovative pathways 

and methods (pp. 215-224). Routledge. 

Lewis, S. J., & Russell, A. J. (2011). Being embedded: 

A way forward for ethnographic research. 

Ethnography, 12(3), 398-416.  

Lindberg, A. (2020). Developing theory through 

integrating human & machine pattern 

recognition. Journal of the Association for 

Information Systems, 21(1), 90-166.  

Lyytinen, K., & Yoo, Y. (2002). Research commentary: 

The next wave of nomadic computing. 

Information Systems Research, 13(4), 377-388.  

Mertens, W., Recker, J., Kohlborn, T., & Kummer, T.-

F. (2016). A framework for the study of positive 

deviance in organizations. Deviant Behavior, 

37(11), 1288-1307.  

Myers, M. D. (2009). Qualitative research in business 

and management. SAGE. 

Orlikowski, W. J. (2000). Using technology and 

constituting structures: A practice lens for 

studying technology in organizations. 

Organization Science, 11(4), 404-428.  

Orlikowski, W. J. (2007). Sociomaterial practices: 

Exploring technology at work. Organization 

Studies, 28(9), 1435-1148.  

Orlikowski, W. J., & Iacono, C. S. (2001). Research 

commentary: Desperately seeking the “IT” in 

IT research: A call to theorizing the IT artifact. 

Information Systems Research, 12(2), 121-134.  

Orlikowski, W. J., & Scott, S. V. (2008). 

Sociomateriality: Challenging the separation of 

technology, work and organization. The 

Academy of Management Annals, 2(1), 433-474.  

Pachilova, R., & Sailer, K. (2019). Ward layout, 

communication and care quality: Spatial 

intelligibility as a key component of hospital 

design. Paper presented at the 12th Space 

Syntax Symposium.  

Pentland, B. T. (1999). Building process theory with 

narrative: From description to explanation. 

Academy of Management Review, 24(4), 711-

725.  

Pentland, B. T., & Feldman, M. S. (2007). Narrative 

networks: Patterns of technology and 

organization. Organization Science, 18(5), 781-

795.  

Pentland, B. T., Feldman, M. S., Becker, M. C., & Liu, 

P. (2012). Dynamics of organizational routines: 

A generative model. Journal of Management 

Studies, 49(8), 1484-1508.  

Pentland, B. T., Haerem, T., & Hillison, D. (2010). 

Comparing organizational routines as recurrent 

patterns of action. Organization Studies, 31(7), 

917-940.  

Pentland, B. T., & Liu, P. (2017). Network models of 

organizational routines: Tracing associations 

between actions. In S. Jain & R. Mir (Eds.), 



Journal of the Association for Information Systems  

 

1234 

Routledge companion to qualitative research in 

organization studies (pp. 422-438). Routledge. 

Pentland, B. T., Liu, P., Kremser, W., & Hærem, T. 

(2020). The dynamics of drift in digitized 

processes. MIS Quarterly, 44(1), 19-47.  

Pentland, B. T., Pentland, A. P., & Calantone, R. J. 

(2017a). Bracketing off the actors: Towards an 

action-centric research agenda. Information 

and Organization, 27(3), 137-143.  

Pentland, B. T., Recker, J., & Kim, I. (2017b). 

Capturing reality in flight? Empirical tools for 

strong process theory. Paper presented at the 

38th International Conference on Information 

Systems. 

Pentland, B. T., Recker, J., & Wyner, G. (2015). A 

thermometer for interdependence: Exploring 

patterns of interdependence using networks of 

affordances. Paper presented at the 36th 

International Conference on Information 

Systems.  

Pentland, B. T., Recker, J., & Wyner, G. (2016). 

Conceptualizing and measuring 

interdependence between organizational 

routines. Paper presented at the 37th 

International Conference on Information 

Systems.  

Pentland, B. T., Recker, J., & Wyner, G. (2017c). 

Rediscovering handoffs. Academy of 

Management Discoveries, 3(3), 284-301.  

Pettigrew, A. M. (1997). What is a processual analysis. 

Scandinavian Journal of Management, 13(4), 

337-348.  

Pettigrew, A. M. (2012). Context and action in the 

transformation of the firm: A reprise. Journal of 

Management Studies, 49(7), 1304-1328.  

Pickering, A. (2010). The mangle of practice: Time, 

agency, and science. University of Chicago 

Press. 

Plsek, P. E., & Wilson, T. (2001). Complexity, 

leadership, and management in healthcare 

organisations. British Medical Journal, 

323(7315), 746-749.  

Poole, M. S., Lambert, N., Murase, T., Raquel, A., & 

Joseph, M. (2017). Sequential analysis of 

processes. In A. langley & H. Tsoukas (Eds.), 

The SAGE handbook of process organization 

studies (pp. 254-270). SAGE. 

Recker, J., Rosemann, M., Indulska, M., & Green, P. 

(2009). Business process modeling: A 

comparative analysis. Journal of the 

Association for Information Systems, 10(4), 

333-363.  

Rosemann, M., Recker, J., & Flender, C. (2008). 

Contextualization of business processes. 

International Journal of Business Process 

Integration and Management, 3(1), 47-60.  

Rotman, B. (2016). Signifying nothing: The semiotics 

of zero (2nd ed.). Palgrave Macmillan. 

Sanjek, R. (1991). The ethnographic present. Man, 

26(4), 609-628.  

Schensul, S. L., Schensul, J. J., & LeCompte, M. D. 

(1999). Essential ethnographic methods: 

Observations, interviews, and questionnaires. 

AltaMira. 

Schofield, J. W. (2002). Increasing the generalizability 

of qualitative research. In M. Huberman & M. 

B. Miles (Eds.), The qualitative researcher's 

companion (pp. 171-203). SAGE. 

Strong, D. M., Volkoff, O., Johnson, S. A., Pelletier, L. 

R., Bar-On, I., Tulu, B., . . . Garber, L. (2014). 

A theory of clinic-ehr affordance actualization. 

Journal of the Association for Information 

Systems, 15(2), 53-85.  

Sundararajan, A., Provost, F., Oestreicher-Singer, G., 

& Aral, S. (2013). Research commentary: 

Information in digital, economic, and social 

networks. Information Systems Research, 24(4), 

883-905.  

Swanson, E. B. (2019). Technology as routine 

capability. MIS Quarterly, 43(3), 1007-1024.  

Törnberg, P., & Törnberg, A. (2018). The limits of 

computation: A philosophical critique of 

contemporary big data research. Big Data & 

Society, 5(2), 2053951718811843.  

Tsoukas, H., & Chia, R. (2002). On organizational 

becoming: Rethinking organizational change. 

Organization Science, 13(5), 567-582.  

Urquhart, C. (2013). Grounded theory for qualitative 

research: A practical guide. SAGE. 

Urquhart, C., Lehmann, H., & Myers, M. D. (2010). 

Putting the theory back into grounded theory: 

Guidelines for grounded theory studies in 

information systems. Information Systems 

Journal, 20(4), 357-381.  

van de Ven, A. H., & Poole, M. S. (1990). Methods for 

studying innovation development in the 

Minnesota innovation research program. 

Organization Science, 1(3), 313-335.  

van de Ven, A. H., & Poole, M. S. (1995). Explaining 

development and change in organizations 

Academy of Management Review, 20(3), 510-

540.  



Bringing Context Inside Process Research 

 

1235 

van der Aalst, W. M. P. (1998). The application of petri 

nets to workflow management. The Journal of 

Circuits, Systems and Computers, 8(1), 21-66.  

van der Aalst, W. M. P. (2005). Business alignment: 

Using process mining as a tool for delta analysis 

and conformance testing. Requirements 

Engineering, 10(3), 198-211.  

van der Aalst, W. M. P. (2009). Tomtom for business 

process management (tomtom4bpm) In P. van 

Eck, J. Gordijn & R. Wieringa (Eds.), Advanced 

information systems engineering: CAISE 2009 

(pp. 2-5). Springer. 

van der Aalst, W. M. P. (2011a). Process mining: 

Discovering and improving spaghetti and 

lasagna processes. Paper presented at the 2011 

IEEE Symposium on Computational 

Intelligence and Data Mining.  

van der Aalst, W. M. P. (2011b). Process mining: 

Discovery, conformance and enhancement of 

business processes. Springer. 

van der Aalst, W. M. P. (2016). Process mining: Data 

science in action. Springer. 

van der Aalst, W. M. P., & Dustdar, S. (2012). Process 

mining put into context. IEEE Internet 

Computing, 16(1), 82-86.  

van der Aalst, W. M. P., Weijters, A. J. M. M., & 

Maruster, L. (2004). Workflow mining: 

Discovering process models from event logs. 

IEEE Transactions on Knowledge and Data 

Engineering, 16(9), 1128-1142.  

van Dongen, B. F., Alves de Medeiros, A. K., Verbeek, 

H. M. V., Weijters, A. J. M. M., & van der Aalst, 

W. M. P. (2005). The prom framework: A new 

era in process mining tool support. In G. Ciardo 

& P. Darondeau (Eds.), Applications and theory 

of petri nets 2005 (pp. 444-454). Springer. 

Wassermann, S., & Faust, K. (1994). Social network 

analysis: Methods and applications. 

Cambridge University Press. 

Weick, K. E. (1969). The social psychology of 

organizing (2nd ed.). McGraw-Hill. 

Whelan, E., Teigland, R., Vaast, E., & Butler, B. S. 

(2016). Expanding the horizons of digital social 

networks: Mixing big trace datasets with 

qualitative approaches. Information and 

Organization, 26(1-2), 1-12.  

Whetten, D. A. (2009). An examination of the interface 

between context and theory applied to the study 

of chinese organizations. Management and 

Organization Review, 5(1), 29-55.  

Winter, S., Berente, N., Howison, J., & Butler, B. S. 

(2014). Beyond the organizational “container”: 

Conceptualizing 21st century sociotechnical 

work. Information and Organization, 24(4), 

250-269.  

Xu, H., Zhang, N., & Zhou, L. (2020). Validity 

concerns in research using organic data. 

Journal of Management, 46(7), 1257-1274.  

Yeow, A., & Faraj, S. (2011). Using narrative 

networks to study enterprise systems and 

organizational change. International Journal of 

Accounting Information Systems, 12(2), 116-

125.  

Yoo, Y. (2010). Computing in everyday life: A call for 

research on experiential computing. MIS 

Quarterly, 34(2), 213-231.  

Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). The 

new organizing logic of digital innovation: An 

agenda for information systems research. 

Information Systems Research, 21(4), 724-735.  

 



Journal of the Association for Information Systems  

 

1236 

About the Authors 

Brian T. Pentland is the Main Street Capital Partners Endowed Professor in the Department of Accounting and 

Information Systems at Michigan State University. His research is focused on the analysis of repetitive patterns of 

action, such as organizational routines. His creative work has appeared in Academy of Management Review, Academy 

of Management Journal, Accounting, Organizations and Society, Administrative Science Quarterly, JAIS, Journal of 

Management Studies, Management Science, MIS Quarterly, Organization Science, Organization Studies, YouTube, 

Soundcloud, and elsewhere. He received his PhD in management from the Massachusetts Institute of Technology in 

1991 and his SB in Mechanical Engineering from the Massachusetts Institute of Technology in 1981.  

Jan Recker is an AIS Fellow, Alexander-von-Humboldt Fellow, chaired professor of information systems and systems 

development at the University of Cologne, and adjunct professor at Queensland University of Technology. His research 

focuses on systems analysis and design, digital innovation and entrepreneurship, and digital solutions for sustainability 

challenges. 

Julie Ryan Wolf is an associate professor of dermatology and radiation oncology as well as a member of the University 

of Rochester NCI Community Oncology Research Program (NCORP) Research Base. She received her BA from 

University of Chicago, her PhD in pathology from UNC-Chapel Hill, and her MPH from University of Rochester. Her 

research combines the fields of dermatology, radiation biology, oncology, and health services/outcomes research. Dr. 

Wolf strives to improve healthcare by facilitating access to evidence-based, patient-centered care and optimizing 

metrics for assessing quality of care. Her research is currently or has been funded by the National Science Foundation 

(NSF), National Cancer Institute (NCI), Pfizer, Wilmot Cancer Institute, Hope Foundation, Biomedical Advanced 

Research and Development Authority (BARDA), National Institutes of Allergy and Infectious Disease (NIAID), 

Dermatology Foundation, and University of Rochester CTSA. 

George Wyner is an associate professor of the practice of information systems at the Carroll School of Management 

at Boston College. His research interests include the analysis and design of organizational processes and the 

information systems that support them. He has published in Management Science, MIS Quarterly, Academy of 

Management Discoveries, Information Systems, and elsewhere. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 by the Association for Information Systems. Permission to make digital or hard copies of all or part 

of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for 

components of this work owned by others than the Association for Information Systems must be honored. Abstracting 

with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior 

specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, 

GA, 30301-2712 Attn: Reprints, or via email from publications@aisnet.org. 


