2,125 research outputs found

    Fermi-Edge Superfluorescence from a Quantum-Degenerate Electron-Hole Gas

    Get PDF
    We report on the observation of spontaneous bursts of coherent radiation from a quantum-degenerate gas of nonequilibrium electron-hole pairs in semiconductor quantum wells. Unlike typical spontaneous emission from semiconductors, which occurs at the band edge, the observed emission occurs at the quasi-Fermi edge of the carrier distribution. As the carriers are consumed by recombination, the quasi-Fermi energy goes down toward the band edge, and we observe a continuously red-shifting streak. We interpret this emission as cooperative spontaneous recombination of electron-hole pairs, or superfluorescence, which is enhanced by Coulomb interactions near the Fermi edge. This novel many-body enhancement allows the magnitude of the spontaneously developed macroscopic polarization to exceed the maximum value for ordinary superfluorescence, making electron-hole superfluorescence even more "super" than atomic superfluorescence.Comment: 10 pages, 5 figure

    Micromachined “side-viewing” optical sensor probe for detection of esophageal cancers

    Get PDF
    In this paper, we report the design, fabrication and testing of a new miniaturized optical sensor probe with “side viewing” capability for oblique incidence diffuse reflectance spectrometry. The sensor probe consists of a lithographically patterned polymer waveguides chip and two micromachined positioning substrates and source/collection fibers to achieve 45° light incidence and collection of spatially resolved diffuse reflectance. Diffuse reflectance of human esophageal surface has been successfully measured for differentiation of cancerous tissues from normal ones

    Collective Antenna Effects in the Terahertz and Infrared Response of Highly Aligned Carbon Nanotube Arrays

    Get PDF
    We study macroscopically-aligned single-wall carbon nanotube arrays with uniform lengths via polarization-dependent terahertz and infrared transmission spectroscopy. Polarization anisotropy is extreme at frequencies less than \sim3 THz with no sign of attenuation when the polarization is perpendicular to the alignment direction. The attenuation for both parallel and perpendicular polarizations increases with increasing frequency, exhibiting a pronounced and broad peak around 10 THz in the parallel case. We model the electromagnetic response of the sample by taking into account both radiative scattering and absorption losses. We show that our sample acts as an effective antenna due to the high degree of alignment, exhibiting much larger radiative scattering than absorption in the mid/far-infrared range. Our calculated attenuation spectrum clearly shows a non-Drude peak at \sim10 THz in agreement with the experiment.Comment: 5 pages, 5 figure

    Optimization of broadband semiconductor chirped mirrors with genetic algorithm

    Get PDF
    Genetic algorithm was applied for optimization of dispersion properties in semiconductor Bragg reflectors for applications in femtosecond lasers. Broadband, large negative group-delay dispersion was achieved in the optimized design: The group-delay dispersion (GDD) as large as −3500 fs2 was theoretically obtained over a 10-nm bandwidth. The designed structure was manufactured and tested, providing GDD −3320 fs2 over a 7-nm bandwidth. The mirror performance was verified in semiconductor structures grown with molecular beam epitaxy. The mirror was tested in a passively mode-locked Yb:KYW laser

    Fault-Tolerant Exact State Transmission

    Get PDF
    We show that a category of one-dimensional XY-type models may enable high-fidelity quantum state transmissions, regardless of details of coupling configurations. This observation leads to a fault- tolerant design of a state transmission setup. The setup is fault-tolerant, with specified thresholds, against engineering failures of coupling configurations, fabrication imperfections or defects, and even time-dependent noises. We propose the implementation of the fault-tolerant scheme using hard-core bosons in one-dimensional optical lattices.Comment: 5 pages and 4 figure

    Electronic structure, magnetism, and disorder in the Heusler compound Co2_2TiSn

    Full text link
    Polycrystalline samples of the half-metallic ferromagnet Heusler compound Co2_2TiSn have been prepared and studied using bulk techniques (X-ray diffraction and magnetization) as well as local probes (119^{119}Sn M\"ossbauer spectroscopy and 59^{59}Co nuclear magnetic resonance spectroscopy) in order to determine how disorder affects half-metallic behavior and also, to establish the joint use of M\"ossbauer and NMR spectroscopies as a quantitative probe of local ion ordering in these compounds. Additionally, density functional electronic structure calculations on ordered and partially disordered Co2_2TiSn compounds have been carried out at a number of different levels of theory in order to simultaneously understand how the particular choice of DFT scheme as well as disorder affect the computed magnetization. Our studies suggest that a sample which seems well-ordered by X-ray diffraction and magnetization measurements can possess up to 10% of antisite (Co/Ti) disordering. Computations similarly suggest that even 12.5% antisite Co/Ti disorder does not destroy the half-metallic character of this material. However, the use of an appropriate level of non-local DFT is crucial.Comment: 11 pages and 5 figure

    De novo variants disturbing the transactivation capacity of POU3F3 cause a characteristic neurodevelopmental disorder

    No full text
    POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder

    Genetic markers of Munc13 protein family member, BAIAP3, are gender-specifically associated with anxiety and benzodiazepine abuse in mouse and man

    No full text
    Anxiety disorders and substance abuse, including benzodiazepine use disorder, frequently occur together. Unfortunately, treatment of anxiety disorders still includes benzodiazepines, and patients with an existing comorbid benzodiazepine use disorder or a genetic susceptibility for benzodiazepine use disorder may be at risk of adverse treatment outcomes. The identification of genetic predictors for anxiety disorders, and especially for benzodiazepine use disorder, could aid the selection of the best treatment option and improve clinical outcomes. The brain-specific angiogenesis inhibitor I–associated protein 3 (Baiap3) is a member of the mammalian uncoordinated 13 (Munc13) protein family of synaptic regulators of neurotransmitter exocytosis, with a striking expression pattern in amygdalae, hypothalamus and periaqueductal gray. Deletion of Baiap3 in mice leads to enhanced seizure propensity and increased anxiety, with the latter being more pronounced in female than in male animals. We hypothesized that genetic variation in human BAIAP3 may also be associated with anxiety. By using a phenotype-based genetic association study, we identified two human BAIAP3 single-nucleotide polymorphism risk genotypes (AA for rs2235632, TT for rs1132358) that show a significant association with anxiety in women and, surprisingly, with benzodiazepine abuse in men. Returning to mice, we found that male, but not female, Baiap3 knockout (KO) mice develop tolerance to diazepam more quickly than control animals. Analysis of cultured Baiap3 KO hypothalamus slices revealed an increase in basal network activity and an altered response to diazepam withdrawal. Thus, Baiap3/BAIAP3 is gender specifically associated with anxiety and benzodiazepine use disorder, and the analysis of Baiap3/BAIAP3-related functions may help elucidate mechanisms underlying the development of both disorders
    corecore