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We report on the observation of spontaneous bursts of coherent radiation from a quantum-
degenerate gas of nonequilibrium electron-hole pairs in semiconductor quantum wells. Unlike typical
spontaneous emission from semiconductors, which occurs at the band edge, the observed emission
occurs at the quasi-Fermi edge of the carrier distribution. As the carriers are consumed by re-
combination, the quasi-Fermi energy goes down toward the band edge, and we observe a contin-
uously red-shifting streak. We interpret this emission as cooperative spontaneous recombination
of electron-hole pairs, or superfluorescence, which is enhanced by Coulomb interactions near the
Fermi edge. This novel many-body enhancement allows the magnitude of the spontaneously devel-
oped macroscopic polarization to exceed the maximum value for ordinary superfluorescence, making
electron-hole superfluorescence even more “super” than atomic superfluorescence.

I. INTRODUCTION

Recent advances in optical studies of condensed matter
systems have led to the emergence of a variety of phenom-
ena that have conventionally been studied in the realm of
quantum optics, including the Rabi flopping behavior,1,2

the Autler-Townes splitting and dressed states,3–5 elec-
tromagnetically induced transparency,6 and the Mollow
triplet.7,8 These studies have not only deepened our un-
derstanding of light-matter interactions but also intro-
duced aspects of many-body correlations inherent in op-
tical processes in condensed matter systems.9,10

Here, we study nonequilibrium dynamics of high-
density electron-hole (e-h) pairs in photo-excited semi-
conductor quantum wells at low temperature. The e-h
pairs are incoherently prepared, but a macroscopic po-
larization spontaneously emerges and cooperatively de-
cays, emitting a giant pulse of coherent light. This
phenomenon, known as superfluorescence (SF)11,12 in
quantum optics, is a nonequilibrium many-body process,
in which order emerges in a self-organized manner via
quantum fluctuations.13 A giant dipole grows as inverted
atomic dipoles interact with each other by exchanging
spontaneously emitted photons. As predicted by Dicke in
195414 and verified experimentally in atomic gases,15,16

the resultant macroscopic polarization produced by N
atomic dipoles with an individual decay rate of γ can
cooperatively decay at an accelerated rate Nγ and an
intensity ∝ N2.17–19

We demonstrate that Coulomb interactions, i.e.,
virtual-photon exchange, among photo-excited carriers
have a profound influence on the collective superradiant
decay of the dense e-h plasma. Contrary to a typical in-
terband emission spectrum of semiconductors, which is
concentrated near the band gap, the observed SF spec-
tra of this Coulomb-correlated ensemble of e-h pairs show
that the dominant emission originates from the recombi-
nation of electrons and holes at their respective quasi-

Fermi energies. Consequently, we observe a red-shifting
streak of SF at zero magnetic field and sequential SF
bursts from different Landau levels in a quantizing mag-
netic field. The photon energy of the emitted SF mir-
rors the instantaneous location of the quasi-Fermi en-
ergy, which continuously decreases with time toward the
band edge as the e-h pairs at the Fermi edge are con-
sumed by SF; this dynamic red-shift is opposite to what
we expect from band-gap renormalization, which should
decrease as the carriers are consumed, leading to a dy-
namic blue-shift. Overall, the many-body effects in this
system are not just small corrections that require exotic
conditions to be observed; rather, they completely dom-
inate the electron dynamics and emission spectra. Thus,
ultrabright SF from a dense e-h plasma is one of the most
vivid displays of many-body physics in semiconductors.

II. METHODS

The sample studied was an undoped multiple quan-
tum well structure, consisting of fifteen layers of 8-nm
In0.2Ga0.8As wells and 15-nm GaAs barriers. By using
an amplified Ti:sapphire laser with with a pulse width of
∼150 fs, a repetition rate of 1 kHz, and a photon energy of
∼1.6 eV, we generated carriers with energies higher than
the band gap of the GaAs barriers.20 The experimental
data shown in Figs. 1 and 2 was taken utilizing the optical
Kerr gate method at Rice University using a 1 kHz am-
plified Ti:sapphire laser (Clark-MXR: CPA-2001). The
Kerr medium used was Toluene. The photoluminescence
was collected and imaged with off-axis parabolic mirrors
onto the Kerr medium. A split-off portion of the ex-
citation beam was used as the optical Kerr gate pulse.
The time-resolved photoluminescence was measured by
a CCD camera attached to a grating spectrometer after
incrementally changing the time delay between the ex-
citation and gate pulses using a one-dimensional linear
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Figure	
  1 

FIG. 1: Observation of intense ultrashort pulses of radiation from a photo-excited InGaAs quantum well sample
with photon energy and time delay continuously changing with time. a, The experimental geometry. The in-plane
emission is redirected with a micro-prism towards the collection optics. The sample was kept at 15 K and 0 T. The excitation
photon energy, pulse width, and pulse energy were ∼1.6 eV, ∼150 fs, and 5 µJ, respectively. b, Photoluminescence intensity
as a simultaneous function of time delay and photon energy. The peak emission red-shifts as a function of time. c, Spectral
slices of the map in b for various time delays. d, Temporal slices of the map in b for various photon energies, showing pulses
of radiation whose delay time with respect to the pump pulse becomes longer with decreasing photon energy.

stage. The experimental data shown in Fig. 3 was taken
at the National High Magnetic Field Laboratory in Talla-
hassee, utilizing a 17.5-T superconducting magnet. The
sample was mounted in the Faraday geometry, where the
magnetic field was parallel to the optical excitation and
perpendicular to the plane of the quantum wells. We
observed time-resolved photoluminescence using a streak
camera with 2 ps time resolution.

III. RESULTS

Figure 1a shows the experimental geometry used in
this work. Photoluminescence (PL) travels in all direc-
tions, but some of the emission travels in the plane of
the quantum wells, which is reflected by the micro-prism
towards our collection optics. Figure 1b shows the result

of time-resolved measurements of in-plane-emitted PL
taken at 15 K at zero magnetic field with a pump pulse
energy of 5 µJ. The dominant feature is a line of emission
starting from ∼1.45 eV and ending at ∼1.325 eV, i.e., the
emitted photon energy changes continuously with time.
There is a kink in the line at ∼1.42 eV, which corre-
sponds to the E1L1 transition; the curvature of the line
also changes slightly at that kink. Figure 1c shows some
“vertical” slices of the data in Fig. 1b at various time
delays. We see that for a given time delay there is an
emission peak with a spectral width of 5-10 meV, which
dynamically shifts to lower energy as time passes. Figure
1d shows some “horizontal” slices of the data in Fig. 1b
at various photon energies, demonstrating an ultrashort
pulse of light emitted at a given photon energy at a cer-
tain time delay after excitation.

We found that the spectral and temporal behavior of
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Figure	
  2 

FIG. 2: Excitation pulse energy and temperature dependence of the observed pulsed radiation at zero magnetic
field. Photoluminescence intensity versus time delay and photon energy for excitation pulse energies of a, 2.1 µJ, b, 1 µJ, and
c, 0.5 µJ at 15 K and 0 T. Photoluminescence intensity versus time delay and photon energy at d, 25 K, e 75 K, and f 100 K,
with 5 µJ excitation pulse energy at 0 T. The intense pulsed emission of radiation becomes weaker with decreasing (increasing)
excitation power (temperature) and eventually disappears when the excitation power (temperature) becomes too low (high).

the emission line sensitively depends on the excitation
pulse energy and temperature. Figures 2a-c show time-
resolved PL maps taken with different excitation pulse
energies at zero magnetic field. The map constructed
with 2.1 µJ pulse energy looks very similar to the map
constructed with 5 µJ (Fig. 1b). When the power is fur-
ther decreased, there is a non-monotonic temporal shift
in the line of emission. For a given photon energy close
to the middle of the line, say 1.37 eV, we see that the
line moves to earlier time from 2.1 to 1 µJ and then back
to a later time at 0.5 µJ excitation pulse energy with a
change in curvature. At the highest photon energy for
strong emission in the line, at ∼1.45 eV, the emission
moves to earlier time delays with decreasing power and
then stays there for the lowest power. For all excita-
tion powers, the emission line ends at 1.325 eV, which
corresponds to the E1H1 band-edge. We also varied the
temperature while fixing the excitation pulse energy at
5 µJ, as shown in Figs. 2d-f. With increasing tempera-
ture, there is a smearing of the emission line at the lowest
photon energies of the line, until all of the emission from
the E1H1 contribution of the line is ‘washed out’, and
only the slightest signal at the E1L1 portion remains at
100 K. It is clear that the emission burst moves to later
times as it is ‘washed out’ at high temperatures.

The emission spectrum and dynamics drastically
change when a magnetic field perpendicular to the quan-

tum well plane is applied. Figures 3a-e show streak cam-
era images of emission as a function of photon energy
and time delay at different magnetic fields. With increas-
ing magnetic field, the number of peaks decreases, and
the energy separation between adjacent peaks increases
due to increasing Landau quantization energy (i.e., the
cyclotron energy). Previously we demonstrated the su-
perradiant nature of the individual emission peaks by
streak-camera and pump-probe measurements.20 Here we
observe that at a given magnetic field the delay is longer
for emission from lower Landau levels, and the (NN) =
(00) SF emission occurs only after the higher-energy SF
emissions occur. This means that the relative timing of
the bursts coming from different Landau levels is not ran-
dom. Rather, these data clearly indicate that e-h pairs in
the highest occupied energy states near the quasi-Fermi
edge at a given time always recombine first; e-h pairs in
lower and lower energy states then emit bursts sequen-
tially. Figure 3f summarizes the peak positions of the SF
bursts as a function of photon energy and time.

IV. DISCUSSION

We interpret these phenomena in terms of Coulomb
enhancement of gain near the Fermi energy in a high-
density e-h system, which results in a preferential SF
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FIG. 3: Magnetic-field evolution of the observed pulsed coherent emission as a function of photon energy and
time delay. Time-resolved emission spectra at a, 0 T, b, 6 T, c, 10 T, d, 14 T, and e, 17.5 T with 2 µJ of excitation
pulse energy. Each (N,N) recombination is observed as a delayed burst of superfluorescence (N : Landau level index). With
increasing magnetic field, the number of peaks decreases, and the energy separation between adjacent peaks increases due to
increasing Landau quantization energy. At a fixed magnetic field, the delay is longer for smaller N . Note that the N = 0 state
is the last to burst. f, Peak shift of emission as a function of time at different magnetic fields.

burst near the Fermi edge, as schematically shown in
Fig. 4. After relaxation and thermalization, the photo-
generated carriers form degenerate Fermi gases with re-
spective quasi-Fermi energies inside the conduction and
valence bands. The recombination gain for the e-h states
just below the quasi-Fermi energies is predicted to be
enhanced due to Coulomb interactions among carriers,21

which causes a SF burst to form at the Fermi edge most
easily. As a burst occurs, a significant population is de-
pleted, resulting in a decreased Fermi energy. Thus, as

time goes on, the Fermi level moves toward the band
edge continuously. This results in a continuous line of
SF emission at zero field (Figs. 1 and 2) and a series of
sequential SF bursts in a magnetic field (Fig. 3).

We model the recombination dynamics of the photo-
excited e-h plasma using semiconductor Bloch equations
derived from a general two-band e-h Hamiltonian in the
Hartree-Fock approximation (see Appendix for more de-
tails). At the linear stage of SF, when the field grows
exponentially, the gain spectrum is given by g(ω) =
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FIG. 4: Interpretation of the burst of emission with
dynamically red-shifting wavelength: coherent Fermi-
edge emission via ultrafast superradiant recombina-
tion of an electron-hole plasma. a, Zero magnetic field.
Carriers near the instantaneous quasi-Fermi energies are con-
sumed through ultrafast cooperative recombination, due to
many-body enhancement of gain,21 leading to both a burst
of radiation with continuously red-shifting wavelength and a
continuously decreasing Fermi energy towards the band edge.
b, Finite magnetic field. Electron-hole pairs at the highest oc-
cupied Landau levels recombine first, again due to many-body
enhancement of gain, leading to sequential bursts of superflu-
orescece from higher to lower Landau levels toward the (00)
level.

4πω
nbc

Im[χ(ω)], where nb is the background refractive in-

dex, c is the speed of light, χ(ω) = 1
V

∑
α µ
∗
αχα(ω) is the

optical susceptibility, and V is the normalization volume.
The functions χα(ω) satisfy a set of linear equations

χα(ω) = χ0
α(ω)

1 +
1

µα

∑
β

Vαββαχβ(ω)

 , (1)

where

χ0
α(ω) :=

µα
(
neα + nhα − 1

)
h̄ω −

(
E0
g + EeRα + EhRα

)
+ ih̄γα

, (2)

each Greek subscript (α, β, ...) denotes a set of quantum
numbers for a given single-particle state (e.g., wave vec-

tor, Landau level index, and spin), µα is the dipole matrix
element of the optical transition between electron and

hole states with index α, EeRα =
(
Eeα −

∑
β Vαββαn

e
β

)
and EhRα =

(
Ehα −

∑
β Vαββαn

h
β

)
are the renormalized

energies of single-particle states Ee,hα , neα and nhα are e-
h occupation numbers, and γα is the phenomenological
dephasing term for the interband polarization. Matrix
elements Vαβγδ of the screened Coulomb interaction are
specified in Appendix A; screening is calculated using the
Lindhard formula.

An example of Coulomb-induced modification of gain
for quantum wells at zero magnetic field is shown in
Fig. 5a (solid line), together with a gain spectrum ne-
glecting all Coulomb effects except band gap renormal-
ization (dashed line); the latter was obtained by replac-
ing χα(ω) by χ0

α(ω). It is seen that Coulomb interactions
lead to an enhancement of gain just below the energy that
corresponds to the difference between the quasi-Fermi
levels of electrons and heavy holes. Previously, a related
effect of “Fermi-edge singularity” has been observed in
the spontaneous PL spectra of n-doped quantum wells
in a steady state.22 In the present case, the many-body
gain enhancement is completely due to a nonequilibrium
photo-excited e-h plasma. Stimulated emission occurs in
the quantum well plane, and the light intensity grows
exponentially, both in space and time. As a result, the
rather broad many-body enhancement in the gain spec-
trum around Fermi energy translates into a sharp peak
in the instantaneous intensity spectrum. The subsequent
time evolution of the spectrum is dominated by an ul-
trafast collective recombination process: the peak con-
tinuously follows the red-shift of the quasi-Fermi level
as the carriers at the Fermi edge are consumed by the
SF. This behavior, observed in our samples according to
Fig. 2, is in agreement with Fig. 5b, which shows the
calculated evolution of the peak gain and peak gain en-
ergy as a function of e-h pair density. Furthermore, the
highest gain, which leads to the fastest decay, is seen to
be achieved at some intermediate density, which explains
the observed non-monotonic temporal shift as a function
of pump power (Figs. 2a-c).

In a strong magnetic field, the gain spectrum exhibits
strong peaks when the Landau level filling factor is an
integer, and for a given filling factor, the gain is largest
for the highest filled Landau level (Figs. 5c and 5d). A
snapshot of the gain for a fixed filling factor ν = 3, corre-
sponding to three filled Landau levels, is shown in Fig. 5c
for a magnetic field of 17 T. It can be seen that the peak
gain for e-h pairs at the N = 3 Landau level is much
higher than that for completely filled, lower Landau lev-
els. Note that the peak gain value is strongly enhanced
compared to quantum wells without a magnetic field due
to an increase in the transition matrix element and den-
sity of states. This provides a natural explanation for
the trend observed in Fig. 3f, i.e., SF develops faster in a
stronger magnetic field. Figure 5d shows the calculated
peak gain and peak gain energy as a function of filling
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FIG. 5: Theoretical calculations of Coulomb-induced many-body enhancement of gain at the Fermi energy at
zero magnetic field and 17 T. a, Gain spectrum for the InGaAs sample without a magnetic field, calculated using Eq. (1)
(solid line), in comparison with the spectrum obtained by replacing χα(ω)→ χ0

α(ω), i.e., neglecting all Coulomb effects except
band-gap renormalization (dashed line). Separate Fermi distributions for electrons and holes of density 1 × 1012 cm−2 and
temperature 5 K are assumed. A relaxation rate of 2 meV is assumed. b, Peak gain (upper panel) and peak gain energy
(lower panel) as a function of e-h density at zero magnetic field. Other parameters are the same as in a. c, Calculated gain
spectrum in a magnetic field of 17 T (solid line), in comparison with the spectrum obtained by replacing χα(ω)→ χ0
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neglecting all Coulomb effects except band-gap renormalization (dashed line). A filling factor ν = 3 and a temperature of 5 K
are assumed. A relaxation rate of 3 meV is adopted. d, Peak gain (upper panel) and peak gain energy (lower panel) at 17 T
as a function of filling factor, defined as the number of filled Landau levels. Other parameters are the same as in c.

factor at a fixed magnetic field of 17 T. The peculiar
many-body dynamics of the peak gain lead to isolated SF
bursts that are fired consecutively from higher to lower
Landau levels, as observed in Fig. 3.

V. SUMMARY

In summary, the results of this study not only pro-
vide new insight into the nonequilibrium dynamics of
Coulomb-correlated electron-hole pairs in semiconduc-
tors but also open up new possibilities of controlling,
and enhancing, collective emission properties of many-

body states. Specifically, we showed that superfluo-
rescence, a well-known phenomenon in quantum optics
of atoms based on photon exchange between inverted
atomic dipoles, takes a new turn when it occurs in a con-
densed matter system, where Coulomb correlations (i.e.,
virtual-photon exchange) create enormous gain concen-
trated at the Fermi edge, which becomes better defined
at lower temperatures. Thus, this work demonstrates a
unique method of producing ultrashort pulses of radi-
ation from a semiconductor, based on the existence of
Fermi-degenerate, nonequilibrium electrons and holes.
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Appendix A: Theoretical Modeling of
Coulomb-Enhancement of Gain at the Fermi Edge

We used the semiconductor Bloch equations (SBEs) to
study SF from a high-density electron-hole (e-h) plasma
in the presence of many-body Coulomb interactions. The
usual form of the SBEs23 is for a bulk semiconductor or a

2D electron gas, when the states can be labeled by a 3D

or 2D wave vector ~k. Here we rederive SBEs following the
same basic approximations but in a more general form,
which accommodates the effects of a finite well width and
the quantization of motion in a strong magnetic field.

We begin with a general Hamiltonian in the two-band
approximation and e-h representation,

H =
∑
α

[(
E0
g + Eeα

)
a†αaα + Ehαb

†
ᾱbᾱ

]
+

1

2

∑
αβγδ

(
V eeαβγδa

†
αa
†
βaδaγ + V hhᾱβ̄γ̄δ̄b

†
ᾱb
†
β̄
bδ̄bγ̄ + 2V ehαβ̄γδ̄a

†
αb
†
β̄
bδ̄aγ

)
− E(t)

∑
α

(
µαa

†
αb
†
ᾱ + µ∗αbᾱaα

)
, (A1)

where E0
g is the unperturbed bandgap, a†α and b†ᾱ

are the creation operators for the electron state α
and hole state ᾱ, respectively, E(t) is the optical
field, µα is the dipole matrix element, and Vαβγδ
are Coulomb matrix elements, for example, V eeαβγδ =∫
d~r1

∫
d~r2Ψe∗

α (~r1)Ψe∗
β (~r2) e2

ε|~r1−~r2|Ψ
e
γ(~r1)Ψe

δ(~r2). Here we

denote the hole state which can be recombined with a
given electron state α optically by ᾱ, and assume that
there is a one-to-one correspondence between them. For

the interband Coulomb interaction, V eh
αβ̄γδ̄

a†αb
†
β̄
bδ̄aγ is the

only non-zero matrix element due to the orthogonal-
ity between the Bloch functions of the conduction and
valence bands.24 The electron and hole wave functions

can be written as Ψe
α(~r) = ψeα(~r)uc0(~r) and Ψh

ᾱ(~r) =
ψhᾱ(~r)u∗v0(~r), respectively. In the problems we study,
the conduction band and valence band states connected
by an optical transition always have the same envelope
wave function, so we take ψhᾱ(~r) = ψe∗α (~r). Then the
Coulomb matrix elements are related with each other
through V hh

ᾱβ̄γ̄δ̄
= V eeγδαβ and V eh

αβ̄γδ̄
= −V eeαδγβ , and we

can drop the superscript by defining Vαβγδ ≡ V eeαβγδ.

Using the above Hamiltonian, we can obtain the equa-
tions of motion for the distribution functions neα = 〈a†αaα〉
and nhα = 〈b†ᾱbᾱ〉, and the polarization Pα = 〈bᾱaα〉. Us-
ing the Hartree-Fock approximation (HFA) and the ran-
dom phase approximation (RPA), we arrive at the SBEs:

ih̄
d

dt
Pα =

(
E0
g + EeRα + EhRα

)
Pα +

(
neα + nhα − 1

)µαE(t) +
∑
β

VαββαPβ

+ ih̄
d

dt
Pα

∣∣∣∣
scatt

, (A2)

h̄
d

dt
neα = −2 Im

µαE(t) +
∑
β

VαββαPβ

P ∗α

+ h̄
d

dt
neα

∣∣∣∣
scatt

, (A3)

h̄
d

dt
nhα = −2 Im

µαE(t) +
∑
β

VαββαPβ

P ∗α

+ h̄
d

dt
nhα

∣∣∣∣
scatt

, (A4)

where EeRα =
(
Eeα −

∑
β Vαββαn

e
β

)
and EhRα =(

Ehα −
∑
β Vαββαn

h
β

)
are the renormalized energies, and

the scattering terms account for higher-order contribu-
tions beyond the HFA and other scattering processes such
as scattering with LO-phonons.

These equations, together with Maxwell’s equations for
the electromagnetic field, can be applied to study the full
nonlinear dynamics of interaction between the e-h plasma
and radiation. Here we derive the gain for given carrier
distributions neα and nhα, which was used to plot Fig. 5.
Assuming a monochromatic and sinusoidal time depen-
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dence for the field E(t) = E0e−iωt and the polarization
Pα(t) = P0αe

−iωt, we can find Pα from Eq. (A2) and
define the quantity χα(ω) = P0α/E0, which satisfies the
equation below:

χα(ω) = χ0
α(ω)

1 +
1

µα

∑
β

Vαββαχβ(ω)

 , (A5)

where

χ0
α(ω) =

µα
(
neα + nhα − 1

)
h̄ω −

(
E0
g + EeRα + EhRα

)
+ ih̄γα

. (A6)

Here we have written the dephasing term phenomenologi-
cally as dPα/dt|scatt = −γαPα. The optical susceptibility
is then

χ(ω) =
1

V

∑
α

µ∗αχα(ω) , (A7)

where V is the normalization volume. The gain spectrum
is given by23

g(ω) =
4πω

nbc
Im[χ(ω)] , (A8)

where nb is the background refractive index, and c is
the speed of light. We use the above general results to
analyze optical properties under different conditions.

In a quantum well of thickness Lw, the enve-

lope functions for electrons and holes are ψe,h
n,~k

(~r) =

ϕn(z) exp
(
i~k · ~ρ

)
/
√
A, where ~ρ = (x, y), ϕn(z) is the

envelope wave function in the growth direction for the
n-th subband, and A is the normalization area. To cal-
culate the Coulomb matrix element Vαββα, we define Ṽαβ

≡ Vαββα and put α =
{
n,~k, s

}
, β =

{
n′,~k′, s′

}
, where

s denotes the spin quantum index. Then one gets

Ṽn,~k,s;n′,~k′,s′ = V 2D(q)Fnn′n′n(q)δss′ , (A9)

where q = |~q| = |~k − ~k′|, V 2D(q) = 2πe2/εAq, ε is the
dielectric function, and the form factor Fnn′n′n(q) is de-
fined as

Fn1,n2,n3,n4(q) =

∫
dz1

∫
dz2ϕ

∗
n1(z1)ϕ∗n2(z2) exp (−q |z1 − z2|)ϕn3(z1)ϕn4(z2) . (A10)

Throughout the paper, we assume that only the low-
est subband for electrons and holes is occupied. In this
case, we can define Ṽ (q) = V 2D(q)F1111(q). The dielec-
tric function ε(~q, ω), which describes the screening of the
Coulomb potential, is given by the Lindhard formula for
a pure 2D case;23 it can be generalized to the quasi-2D
case as

ε(~q, ω) = 1 + Ṽ (q) (Πe(~q, ω) + Πh(~q, ω)) , (A11)

where Πe(h)(~q, ω) is the polarization function of an elec-
tron or hole, which is given by

Π(~q, ω) = 2
∑
~k

n~k+~q − n~k
ω + i0+ − E~k+~q + E~k

. (A12)

Here, we dropped the subscripts e or h, n~k is the distribu-
tion function, the factor of 2 accounts for the summation
over spin, and the spin index is suppressed. For simplic-
ity, we will choose the static limit, namely, ω = 0.

Given the dielectric function ε(q, 0), the screened

Coulomb matrix element is Ṽs(q) = Ṽ (q)/ε(q, 0). For

simplicity, we will still write it as Ṽ (q). Applying Eq.
(A5) to the case above, we get the equation for χ~k(ω):

χ~k(ω) = χ0
~k
(ω)

1 +
1

µ~k

∑
~k′

Ṽ
(∣∣∣~k − ~k′∣∣∣)χ~k′(ω)

(A13)

where χ0
~k
(ω) becomes

χ0
~k
(ω) =

µ~k

(
ne~k + nh~k − 1

)
h̄ω −

(
E0
g + EeR~k

+ EhR~k

)
+ ih̄γ~k

. (A14)

To solve Eq. (A13), we notice that χ0
~k
(ω) does not

depend on the direction of ~k, so χ~k(ω) will not depend
on it, either. Then, after converting the summation in
Eq. (A13) into the integral, the integration over the az-

imuthal angle is acting on Ṽ
(∣∣∣~k − ~k′∣∣∣) only. If we define
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Ṽ (k, k′) =
1

2π

∫ 2π

0

dφṼ
(√

k2 + k′2 − 2kk′ cosφ
)
, (A15)

then Eq. (A13) can be written as

χk(ω) = χ0
k(ω)

[
1 +

A

2πµk

∫ ∞
0

k′dk′Ṽ (k, k′)χ′k(ω)

]
. (A16)

After discretizing the integral, we have a system of lin-
ear equations for χk(ω), which can be solved by using
LAPACK.25 The band structure for our sample consist-
ing of undoped 8-nm In0.2Ga0.8As wells and 15-nm GaAs
barriers on a GaAs substrate is calculated using the pa-
rameters given by Vurgaftman et al.26 The strain effect is
included using the results of Sugawara et al.27 Examples
of calculated gain spectra are shown in Figs. 5a and 5b.

For a quantum well structure in a strong perpendic-
ular magnetic field, the electronic states are fully quan-

tized. Considering only the lowest subband in the quan-
tum well, the equation for the susceptibility is written
as

χν,s = χ0
ν,s

[
1 +

1

µν,s

∑
ν′

Vν,ν′χν′,s

]
, (A17)

where ν is the Landau level index, s is the spin index,
and Vν,ν′ is the Coulomb matrix element given by

Vν,ν′ =
e2

2πε

∫ 2π

0

dθ

∫ ∞
0

dq

∣∣∣∣∫ dxeiqx cos θφν(x)φ∗ν′(x+ qa2
H sin θ)

∣∣∣∣2 , (A18)

where φν(x) is the x-dependent part of the wavefunction
of the ν-th Landau level and a2

H = h̄c/eB. The renor-
malized electronic energies in the expression for χ0

ν,s are

EeRν,s = Eeν,s −
∑
ν′

Vν,ν′neν′ , (A19)

and a similar equation holds for holes. The gain is cal-

culated as

g(ω) =
4πω

nbc

1

πa2
H

Im

[∑
ν

µ∗ν,sχν,s

]
. (A20)

An example of the calculated gain for B = 17 T is shown
in Figs. 5c and 5d.
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