5 research outputs found

    Genome sequencing in families with congenital limb malformations

    Get PDF
    The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00439-021-02295-y

    Genome sequencing in families with congenital limb malformations

    Get PDF
    The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified

    LMNA Mutation in a Family with a Strong History of Sudden Cardiac Death

    No full text
    We report a family with heterozygous deletion of exons 3–6 of the LMNA gene. The main presentation of affected family members was characterized by ventricular and supraventricular arrhythmias, atrioventricular (AV) block and sudden cardiac death (SCD) but also by severe dilative cardiomyopathy (DCM). We report on two siblings, a 36-year-old female and her 40-year-old brother, who suffer from heart failure with mildly reduced ejection fraction, AV conduction delays and premature ventricular complexes. Their 65-year-old mother underwent heart transplantation at the age of 55 due to advanced heart failure. Originally, the LMNA mutation was detected in one of the uncles. This index patient and three of his brothers died of SCD as well as their father and aunt. The two siblings were treated with implanted defibrillators in our specialized tertiary heart failure center. This case report places this specific genetic variant in the context of LMNA-associated familial DCM

    Next-generation sequencing of 32 genes associated with hereditary aortopathies and related disorders of connective tissue in a cohort of 199 patients

    No full text
    Purpose: Heritable factors play an important etiologic role in connective tissue disorders (CTD) with vascular involvement, and a genetic diagnosis is getting increasingly important for gene-tailored, personalized patient management. Methods: We analyzed 32 disease-associated genes by using targeted next-generation sequencing and exome sequencing in a clinically relevant cohort of 199 individuals. We classified and refined sequence variants according to their likelihood for pathogenicity. Results: We identified 1 pathogenic variant (PV; in FBN1 or SMAD3) in 15 patients (7.5%) and >= 1 likely pathogenic variant (LPV; in COL3A1, FBN1, FBN2, LOX, MYH11, SMAD3, TGFBR1, or TGFBR2) in 19 individuals (9.6%), together resulting in 17.1% diagnostic yield. Thirteen PV/LPV were novel. Of PV/LPV-negative patients 47 (23.6%) showed >= 1 variant of uncertain significance (VUS). Twenty-five patients had concomitant variants. In-depth evaluation of reported/calculated variant classes resulted in reclassification of 19.8% of variants. Conclusion: Variant classification and refinement are essential for shaping mutational spectra of disease genes, thereby improving clinical sensitivity. Obligate stringent multigene analysis is a powerful tool for identifying genetic causes of clinically related CTDs. Nonetheless, the relatively high rate of PV/LPV/VUS-negative patients underscores the existence of yet unknown disease loci and/or oligogenic/polygenic inheritance

    Plato argénteo nº 38.215 . Cabeza antropomorfa diademada - ABE0162_AR

    Get PDF
    Proyectos del Plan Nacional I+D+I con referencias PB94-0129, PB97-1132, BHA 2002-00138, HUM 2006-06250/HISTProyectos de la CAM con referencias 06/0020/1997, 06/0094/1998, 06/0090/2000, 06/0043/2001Programa Consolider-Ingenio 2010 con sigla CSD2007-00058NoMuseo Arqueológico Nacional (Madrid)AbengibrePlato argénteo nº 38.215 . Cabeza antropomorfa diademad
    corecore